
555143-L-os-Richter555143-L-os-Richter555143-L-os-Richter555143-L-os-Richter

Prediction throughout 
visual cortex

How statistical regularities shape sensory processing

DAVID RICHTER

INVITATION

to attend the public defense  
of the PhD Thesis

Prediction 
throughout 

visual cortex
HOW STATISTICAL REGULARITIES 

SHAPE SENSORY PROCESSING

 

Thursday, March 11, 2021

at 16.30  hours

Follow the defense live:

www.ru.nl/aula/livestream

DAVID RICHTER
d.richter@donders.ru.nl

 
 

P
R

E
D

IC
T

IO
N

 T
H

R
O

U
G

H
O

U
T

 V
IS

U
A

L
 C

O
R

T
E

X
	

D
avid R

ichter   
493       





Prediction  
throughout  
visual cortex
How statistical regularities  
shape sensory processing

DAVID RICHTER



Prediction throughout visual cortex
How statistical regularities shape sensory processing

Coverdesign

David Richter 

Lay-out 

Proefschriftenbalie, Nijmegen

Print

Ipskamp Printing, Enschede

ISBN  978-94-6421-219-8

Donders Institute for Brain, Cognition and Behaviour

Donders Centre for Cognitive Neuroimaging

Radboud University Nijmegen, The Netherlands

© David Richter, 2021



Prediction throughout visual cortex
How statistical regularities shape sensory processing

Proefschrift

ter verkrijging van de graad van doctor 

aan de Radboud Universiteit Nijmegen

 op gezag van de rector magnificus prof. dr. J.H.J.M. van Krieken, 

volgens besluit van het college van decanen

 in het openbaar te verdedigen op donderdag 11 maart 2021

om 16.30  uur precies

door

David Richter

 

geboren op 29 mei 1987

te Düsseldorf, Duitsland



Promotor

Prof. dr. F.P. de Lange

Manuscriptcommissie 

Prof. dr. R.J. van Lier

Prof. dr. N.B. Turk-Browne (Yale University, Verenigde Staten)

Dr. C. Press (Birkbeck, University of London, Verenigd Koninkrijk)



Prediction throughout visual cortex
How statistical regularities shape sensory processing

Doctoral Thesis

to obtain the degree of doctor 

from Radboud University Nijmegen 

on the authority of the Rector Magnificus prof. dr. J.H.J.M. van Krieken, 

according to the decision of the Council of Deans 

to be defended in public on Thursday, March 11, 2021 

at 16.30 hours 

by

David Richter

 

born on May 29, 1987

in Düsseldorf, Germany



Supervisor

Prof. dr. F.P. de Lange

Doctoral Thesis Committee 

Prof. dr. R.J. van Lier

Prof. dr. N.B. Turk-Browne (Yale University, United States of America)

Dr. C. Press (Birkbeck, University of London, United Kingdom)



Table of Contents

Chapter 1	 Introduction	 9

Chapter 2	 Suppressed sensory response to predictable object stimuli 

			   throughout the ventral visual stream	 25

Chapter 3	 Statistical learning attenuates visual activity only 

			   for attended stimuli	  51

Chapter 4	 Dampened sensory representations for expected input 

			   across the ventral visual stream	 91

Chapter 5	 Incidental statistical learning of unimodal but not cross-modal 

			   statistical regularities	 147

Chapter 6	� Discussion	 189

			   References	 207

			   Nederlandse samenvatting	 221

			   Curriculum Vitae	 225

			   List of Publications	 226

			   Acknowledgments	 227

			   Research Data Management	 229

			   Donders graduate school for cognitive neuroscience	 231





CHAPTER 1

Introduction





11

INTRODUCTION

C
H

A
P

T
E

R
 

1

What do you see in the left image in Figure 1.1A? Initially, you probably perceive an 

arbitrary arrangement of black lines and shapes. However, if I tell you that this a 

degraded version of the picture of the cat on the right, your percept is likely to change 

to seeing the cat. Thus, only by virtue of the expectation to find a cat your conscious 

percept dramatically changed from an initially meaningless array of shapes to a 

coherent picture of a cat. This example demonstrates in a powerful and intuitive 

manner that perception appears to be fundamentally influenced by expectations. 

How expectations modulate perception, and in particular neural processing 

throughout the sensory brain, will be the focus of my thesis. But before establishing 

more specific questions, which I will address throughout this thesis, I will take a step 

back and assess how we can approach the study of perception and the influence of 

expectations.

Usually, conscious perception may appear to be definite and unambiguous, creating 

the intuition that the brain may simply register a definite sensory world. Indeed, 

traditionally perception has been construed as a feedforward process, moving from 

light sensitive cells in the retina, over simple contrast and edge detectors in early 

visual areas, to increasingly complex shape representations in higher visual areas [1,2]. 

Successive integration of sensory information, by means of feedforward and lateral 

excitatory and inhibitory connections between assemblies of neurons, allows for 

remarkably complex response properties to be constructed. However, accounting for 

the dramatic influence of expectation on perception, as you experienced in Figure 

1.1A, is more challenging in a purely feedforward model. 
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FIGURE 1.1  Expectations modulate perception.

(A) Low detail image demonstrating the effect of expectation on perception. Initially, the picture 
on the left may appear to contain only random shapes. However, upon reading (or noticing) that 
the image depicts the same cat as on the right, your percept may dramatically change into that of 
a cat, even though the bottom-up stimulus information remains identical. (B) Shown is a blurry 
city scene, with a car on the road on the left, and a pedestrian in the foreground on the right. Yet, in 
fact the blurry shapes of the “car” and “pedestrian” are identical, except for a 90 degree rotation, 
as demonstrated on the right. This image illustrates how expectations due to context can affect 
perception of individual objects. Image reproduced with permission from [3]. (C) Illustration 
of Bayesian inference. The abscissa denotes the possible percepts, ranging from visual noise 
(initial percept) to a cat (final percept), while the ordinate shows the associated probability. An 
enormous number of other percepts are also possible, but this depiction is simplified to two 
possibilities for illustration purposes. The left panel depicts your initial viewing of Figure 1.1A, 
that is, a situation without a specific prior (orange distribution) and ambiguous sensory input 
(evidence; green distribution). Thus, the posterior (black distribution) does match the evidence, 
a percept of visual noise, but also reflecting the large uncertainty about what the stimulus might 
depict (i.e., a very broad distribution). The right panel illustrates the situation after receiving an 
informative perceptual prior (expectation to see a cat), which is combined with the ambiguous 
sensory evidence, yielding a new posterior interpretation (seeing a cat), strongly influenced by 
the prior. 

Vision as perceptual inference

The intuition that perception is unambiguous, and simply reflects a definite sensory 

world, belies the true ambiguity that is in fact present in sensory input. Consider for 

example Figure 1.1B, depicting a city scene, with a car on the left and a pedestrian 

walking on the right. However, there is very little detail in the image and in fact 

the car and pedestrian are identical shapes, rotated only by 90 degrees. Yet, we do 

effortlessly identify a car and a pedestrian. How can we explain that so little visual 

detail suffices to determine what we see, and that two almost identical sensations 
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create completely different percepts? Again, the answer is expectations. The 

combination of features resemble city scenes you have experienced before, and given 

this context you expect pedestrians on the sidewalk and cars on the road. In other 

words, your prior experience fills in the lack of visual detail. Curiously, the examples 

in Figure 1.1A and 1.1B thus suggest that what we perceive is a combination of prior 

knowledge, such as our expectations, and sensory input. Throughout this thesis I 

will approach perception as an inferential process, during which prior knowledge 

and current inputs are integrated in order to infer what the most likely causes for our 

sensations are, thereby creating our conscious percepts. This approach will allow me 

to investigate how expectations shape perception.

 

BOX 1.1  Perception as Bayesian inference

The concept of perceptual inference dates back many years, with similar ideas already 

expressed by Hermann von Helmholtz in the middle of the 19th century [4]. Yet, it has 

only been in the past two decades that the idea has gained substantial traction and 

support in neuroscience, with prominent proposals establishing computational and 

implementational mechanisms underlying perceptual inference. Bayesian accounts 

of perception [5–7] constitute a particularly prominent approach to understanding the 

computational principles underlying perception. Bayesian inference is a method for 

updating believes by combining prior believes with new data (evidence). To illustrate 

what this means, let us return to the example of the cat in Figure 1.1A. In Bayesian 

terms your expectation to see a cat constitutes the prior. Initially, the prior probability 

of seeing a cat was very low, similar to the probability of a dog, a banana, or many other 

things. Thus, combined with the uncertain sensory evidence, you were unsure what 

the image might depict. This situation is illustrated in the left panel of Figure 1.1C – 

notice the low probability (i.e., high uncertainty) of the prior, evidence and posterior. 

However, by reading that this is the picture of the cat on the right, your prior believe 

of seeing a cat increased (right panel of Figure 1.1C; orange distribution). Ultimately, 

this prior ‘moved’ your interpretation of the ambiguous sensory evidence (green 

distribution) to the posterior interpretation of perceiving a cat (black distribution). 

In other words, on this account prior expectations and sensory data are continuously 

combined to infer the probable causes underlying sensation. Moreover, we can also 

appreciate that the influence of the prior will not only depend on the prior itself, but 

also on the reliability of the sensory evidence. That is, if sensory input is particularly 

noisy or ambiguous (e.g., Figure 1.1A), perception will be influenced more by prior 

knowledge [8] than if input is low in noise and unambiguous [9,10]. A fundamental 

strength of this account is that top-down influences on perception, such as 

expectations, can be readily integrated.
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Predictive coding

A particularly successful approach casting perception as a process of unconscious 

inference is predictive coding (e.g., [11–13]; reviews: [14,15]). Predictive coding implements 

computational principles of Bayesian inference (Box 1.1) by prediction error 

minimization. The idea is that at each step of the sensory hierarchy a mismatch 

between top-down prediction (prior) and bottom-up input (evidence) is computed. 

The resulting prediction error is weighted by its precision (i.e., sensory reliability; [16]), 

 and in turn constitutes the bottom-up input for the next layer in the hierarchy. Thus, 

at each stage only the unpredicted signal has to be relayed as bottom-up input, hence 

reducing redundancy in sensory cortex [11]. Predictions are generated by internal 

models, given hidden variables, predicting the input specific to the respective layer in 

the cortical hierarchy. Thus, predictions and prediction errors are thought to be feature-

specific [15]. Through recurrent information passing, that is the recursive relaying of 

predictions and prediction errors, errors can be minimized by adjusting predictions. 

This iterative processes aims to ultimately derive the interpretation yielding the 

smallest prediction error, hence reflecting the most likely cause of the sensory input. 

Thus, predictive coding is, in a sense, the inversion of the classical feedforward 

approach to perception, because top-down signals represent the (inferred) world, while 

bottom-up information is used as feedback to update the top-down representations 

(note, details of different predictive coding models can vary; for a review see: [17]). 

Expectation suppression

Let us reconsider the example of the cat in Figure 1.1A in the context of predictive 

coding. Initially, you did not know what to expect and the percept was incoherent. 

In other words, your uninformative predictions did not explain the bottom-up input 

well, thus resulting in a large prediction error. However, once your generative model 

was updated by reading that there is the cat in the stimulus, your prediction better 

matched the bottom-up input, resulting in smaller prediction errors and, through 

recursive error minimization, you converged on the coherent interpretation of a cat. 

Thus, we would expect that prediction errors to a predicted stimulus (expect cat) are 

smaller than the errors in response to an unpredicted stimulus (no expectation). In 

other words, predictions ‘explain away’ bottom-up activity. This hypothesis provides 

us an intriguing approach to assess the initially raised question: how do expectations 

modulate neural processing in the sensory brain?

Previous work has investigated prediction errors by inducing expectations through 

statistical regularity. For example, Kok et al. [18] presented participants with an 
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auditory cue, which with 75% reliability predicted the orientation of a grating 

stimulus. The authors showed that neural responses in primary visual cortex were 

suppressed for expected compared to unexpected orientations. This phenomenon, 

also known as expectation suppression (reviews: [19,20]) is illustrated in Figure 

1.2. In the figure, notice the relative suppression of neural activity to the stimulus 

when it is expected. According to predictive coding accounts, even a well-predicted 

stimulus evokes prediction errors, however these errors are resolved more quickly 

and are smaller in magnitude. Thus, expectation suppression appears to mirror 

the properties of prediction errors, that is, reduced responses to predicted stimuli. 

Crucially, expectation suppression is distinct from repetition suppression [21,22], and 

is found even when stimulus base rates and repetition frequencies are controlled 

for [18,23–28]. Moreover, expectation suppression has been demonstrated beyond 

primary visual cortex, in object selective visual areas [23,27,28] and in audition 

[22,29]. Thus, expectation suppression may be a key signature of how expectations 

modulate sensory processing, and therefore will be of particular interest in this 

thesis. Moreover, given that expectation suppression has been reported in different 

paradigms and sensory areas, we may hypothesize that prediction constitutes a 

general processing principle across cortex [12,19,30]. From this hypothesis we can derive 

specific characteristics which expectation suppression should have, if it does reflect 

a modulation by predictions, and if predictions do constitute a fundamental neural 

processing principle. 

 

FIGURE 1.2  Expectation suppression.

Illustration of the suppression of neural activity by expectations. Sensory responses are 
suppressed if a stimulus is expected (e.g. expected a cat, and saw a cat), compared to the 
response to an unexpected stimulus (e.g. expected a banana, and saw a cat). I will refer to this 
relative suppression of neural responses as expectation suppression.

 
Expectation suppression: a fundamental phenomenon of sensory 
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First, sensory modulations by expectations, and in particular expectation suppression, 

should be evident throughout the sensory hierarchy. That is, if prediction is a core 
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principle of sensory processing, we should find its effects throughout sensory cortex, 

given adequate predictions and stimuli. Second, predictive patterns common in our 

sensory world, such as associations between naturalistic object stimuli should be 

readily acquired and subsequently affect sensory processing. This contention asserts 

that, if prediction is a principle of sensory processing, prediction confirmations and 

violations of common stimuli, such as everyday objects, should result in expectation 

suppression. The rationale is that objects constitute a behaviorally relevant category 

of stimuli and that the association between such objects are prevalent in our sensory 

environment (e.g., a sidewalk predicting a pedestrian in Figure 1.1B), and hence 

should affect sensory processing. Third, learning predictions and subsequently 

utilizing them should occur automatically, without intention to learn or use the 

underlying predictions. This final assertion suggests that if perception is a form of 

unconscious inference, predictions should affect perception largely automatically 

and without any intention to learn or use these predictions.

While previous studies support some of these hypotheses, several discrepancies and 

gaps exist in the literature. On the one hand, some previous studies reported enhanced 

neural responses to predictable compared to random sequences of stimuli [31],  

and enhance responses to attended expected stimuli [32], thus suggesting that 

expectations may not always suppress neural responses. Moreover, previous studies 

in humans, providing evidence for expectation suppression, frequently investigated 

expectations instantiated by simple transitional probabilities. Given the paradigms 

used in these studies, predictions may have been learned and utilized explicitly by 

participants to predict upcoming input (e.g., [18,24,25,28]). Similarly, in studies with 

non-human primates it is unclear whether monkeys actively predicted the upcoming 

stimuli [23,27]. Hence, whether expectations suppression arises automatically and for 

task-irrelevant predictions, particularly following incidental learning of complex 

associations, remains unknown. If we can show that expectations arise automatically, 

for task-irrelevant predictions of object stimuli, and subsequently modulate 

perception, these results would provide additional support for the hypothesis that 

prediction is a fundamental neural process underlying perception. Chapters 2 and 3 

will address these questions and contribute to charting how expectations influence 

perceptual processing. Next, let us consider the properties of expectation suppression 

across visual cortex in more detail.

Feature-specific predictions across the ventral visual stream?

Expectation suppression has been reported in response to prediction violations of 

object and face images in higher visual areas, such as inferior temporal cortex [23,27], 

and in humans in object and face selective areas [24,25,28]. However, from these results 
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it remains unknown whether and how complex predictions of object and face stimuli 

modulate sensory processing across the entire ventral visual stream, particularly in 

early visual cortex. This question is non-trivial, because sensory neurons are tuned 

for different features across the visual hierarchy. V1 neurons are, for example, tuned 

to the orientation of contrasts [33], and neurons in LOC are selective for the shape of 

a stimulus [34]. Thus, when you expected a cat in Figure 1.1A, does this expectation 

of an entire object (a cat) translate into feature-specific shape predictions and even 

low level expectations of local oriented contrasts, relevant for response properties of 

neurons in V1 [33]? Hierarchical predictive coding accounts suggest that this is the case, 

as predictions and prediction errors are thought to be feature-specific [15]. Yet, as also 

noted by Walsh et al. [14] in their review of predictive processing, there is little work 

directly assessing this claim. Exploring the feature-specificity of predictions and 

prediction errors across the hierarchy is crucial, as it tests an important hypothesis 

of predictive coding and further informs us how expectations modulate perception. 

I will address this question using fMRI in chapters 2-3 and forward modelling in 

chapter 4.

Expectation suppression: an effect of prediction or attention?

If expectation suppression is a wide-spread and feature-specific neural phenomenon, 

as hypothesized above, this would however not necessarily mean that it does in fact 

reflect prediction error signals. That is, while I introduced expectation suppression 

here in terms of predictive processing accounts, the phenomenon itself is not 

uniquely accounted for by prediction based theories. For example, one may propose 

that surprise attracts attention [35–37], and attention in turn modulates the gain of 

sensory neurons [38,39]. Expectation suppression could therefore reflect increased 

attention towards unexpected (surprising) compared to expected stimuli [40]. 

Exploring how expectations modulate sensory processing is a key question in 

this thesis, hence evaluating this alternative account in more detail is crucial, as 

it fundamentally questions error coding in sensory cortex. Chapters 2-3 contain 

experiments which provide valuable insight for addressing this alternative account, 

and I will revisit and discuss the evidence for and against it in the general discussion 

in chapter 6.

Do expectations sharpen or dampen neural representations?

Finally, even if we can establish that expectation suppression reflects prediction 

errors, this would still not address how expectations modulate neural responses, or 

which neural populations are suppressed by prediction. Two accounts are commonly 

discussed in the expectation literature [19], which at the onset of the projects reported in 
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this thesis only received limited empirical support. Sharpening accounts suggest that 

neural populations tuned away from the expected stimulus features are particularly 

suppressed by expectations [18,41]. This modulation results in an overall suppressed 

response, but sharpened population representation of the expected stimulus. In 

other words, on this account representations are enhanced by suppressing features 

not in line with the top-down predictions (Figure 1.3A, left panel). The middle image 

in Figure 1.3B illustrates the population representation modulated according to the 

sharpening account – note the increased (sharpened) contrast compared to baseline 

(left image in Figure 1.3B). In opposition to sharpening, dampening (or cancellation; 

[42]) accounts posit that neural populations tuned towards expected features are 

suppressed by expectations (Figure 1.3A, right panel). Thus, dampening results in a 

suppressed response, and a dampened population representation of the expected 

stimulus [23,43]. Predictable input is thus effectively filtered out on this account. In 

Figure 1.3B, notice the reduced (dampened) contrast. 

 

FIGURE 1.3  Sharpening and dampening accounts of expectation suppression.

(A) Illustration of the suppression of neural activity according to sharpening and dampening 
accounts of expectations. According to sharpening account (left), the suppression magnitude 
is larger for neural populations tuned away from the expected stimulus features, hence 
resulting in less expectation suppression the more selective a neuron is for a given stimulus. 
In contrast, dampening (right) proposes that the neurons tuned towards the expected 
stimulus features are most suppressed, thus expectation suppression positively scales with 
stimulus selectivity. (B) Depicted is the population response to an unexpected stimulus (i.e., 
baseline; left) and to an expected stimulus according to sharpening (middle) and dampening 
(right) respectively. Sharpening results in an increased contrast of the pattern present in the 
population response; i.e., a sharper representation of the expected stimulus. Dampening 
reduces the contrast of the pattern, thus resulting in a dampened representation of the 
expected stimulus. Note that the averaged response is equal for the sharpened and dampened 
response, only the specific population which experiences most suppression differs. Thus, 
both accounts result in expectation suppression, while making opposite prediction with 
respect to the neural population that is suppressed.
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Comparing these two distinct accounts will yield insight into the neural modulations 

underlying expectation suppression, and suggest which functional role expectations 

may have in guiding perception, because both accounts are associated with different 

adaptive mechanisms. That is, sharpening may facilitate veridical representations, 

hence aiding in accurate and rapid perception, while dampening may reduce 

redundancy in sensory cortex and highlight novel information [19,44]. Chapters 2 

and 4 contrast predictions of sharpening and dampening accounts, using fMRI and 

forward models, in an effort to elucidate what type of neural modulation underlies 

perceptual expectations.

Statistical learning and sources of perceptual priors

The questions outlined above primarily concern the consequences of expectations for 

sensory processing. Next, let us briefly consider how these expectations (priors) are 

formed in the first place. We have seen based on the example in Figure 1.1A that priors 

can be induced by explicitly receiving information – i.e., I showed you the original 

picture of the cat. However, in Figure 1.1B you did not require any instructions or 

additional information in order to make sense of the city scene. The relevant prior that 

cars usually drive on the road, you probably formed throughout your life, based on 

experiences in situations resembling the context present in the image. Yet, you may 

never have explicitly noticed that you have learned this prior. These simple examples 

suggest two things. Priors can be formed in different ways, likely involving distinct 

routes towards their acquisition. Second, one mechanism by which priors can be 

formed involves the extraction of statistical regularities from the sensory world; e.g., 

cars usually drive on roads. Statistical regularities do not only occur on a conceptual 

level (cars driving on roads), but also for low level sensory features (e.g., temporal 

regularity in visual features [45]). Thus, sensitivity to statistical regularities provides 

a tremendous source of information to predict future states of the world, from short-

term sensory input to long-term, high level events unfolding in predictable ways. 

Indeed, predictive coding suggests that priors are formed by iteratively adjusting 

predictions by prediction error minimization, and thus priors come to represent 

the statistical regularities in the sensory world. Therefore, investigating how agents 

extract statistical regularities from the sensory environment over time, also known as 

statistical learning (reviews: [46–49]), is a particularly powerful approach to elucidate 

the neural mechanisms underlying perceptual inference, and will be a second focus 

in this thesis.

The acquisition of statistical regularities can occur incidentally [50], possibly even 

implicitly [31,51], across different modalities, including vision [36,52–54] and audition 
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[55–57]. Often statistical learning results in facilitated behavioral responses, such as 

faster and more accurate responses to expected stimuli [51,58,59]. And, arching back 

to expectation suppression, the sensory consequences of statistical learning are 

frequently a suppression of neural responses. In particular, sensory responses to 

sequentially presented stimuli have been shown to be suppressed for stimuli that 

were expected given the previous image [23,26]. Thus, statistical learning appears to 

provide a fundamental route towards learning sensory priors, and a different lens 

through which the sensory consequences of expectations can be investigated. While 

numerous studies demonstrated how and under which circumstances sensory priors 

may be acquired (reviews: [46,47,49]), several questions remain in the field of statistical 

learning. I will address some of these questions in this thesis, as an understanding 

of the mechanism for acquiring sensory priors can yield valuable insight into how 

expectations modulate perception.

Are the sensory consequences of statistical learning automatic?

Statistical learning and its sensory consequences have been suggested to occur 

automatically, without intent or awareness [31,50,51,60]. However, it remains unclear 

whether expectation suppression, following incidental statistical learning, 

arises for unattended stimuli. That is, once acquired, do predictions necessarily 

impact sensory processing, or does this modulation hinge on actively attending 

the predictable stimuli? Previous studies have yielded mixed results, with some 

reporting expectation suppression for unattended stimuli [32,61], while others find no 

modulation of sensory responses by expectations without attention [62]. Additionally, 

while some previous studies manipulated task-relevance, their effectiveness of 

manipulating attention can be questioned, as will be elaborated on in chapter 3. 

Shedding light on the automaticity of the sensory consequences of statistical learning 

will yield new insight into the origins and consequences of expectation modulations 

in sensory cortex, and in particularly whether this modulation occurs pre-attentively. 

In chapter 3 I will report an fMRI study we performed to probe the automaticity of 

expectation suppression and its dependence on attention. 

Does statistical learning depend on modality-specific and domain-
general mechanisms?

Whether statistical learning depends on domain-general and modality-specific 

mechanisms remains debated [47,49,63]. That is, some mechanisms underlying 

statistical learning may be subject to modulations and constrains particular to the 

specific stimulus modality [63–67]. Moreover, a central neural mechanism has also 

been suggested to contribute to statistical learning, irrespective of the sensory 
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modality [36,56,68–70]. But, whether domain-generality constitutes a crucial bottleneck 

for learning cross-modal associations has seen little investigation. The rationale is 

that comparing cross-modal to unimodal learning provides a window on modality-

specific and domain-general contributions to statistical learning, as cross-modal 

learning requires additional integration of sensory information in a domain-

general network, and hence cannot occur based on modality-specific mechanisms 

alone. I will explore the question of domain-generality and modality-specificity in 

chapter 5. Establishing whether modality-specific and domain-general constraints 

limit statistical learning may provide valuable insight into the underlying neural 

mechanisms supporting the extraction of statistical regularities over time, and in 

turn into the sensory consequences of statistical learning, expectation suppression. 

Moreover, besides cross-modal limitations to statistical learning, chapter 5 will also 

investigate how the reliability of deterministic compared to probabilistic associations 

affects the acquisition of statistical regularities. Given that many perceptual priors 

may be associated with uncertain outcomes and concern association between sensory 

modalities, elucidating how people learn from non-deterministic and cross-modal 

associations can provide insight into how and to what extent incidental statistical 

learning may provide priors supporting perceptual inference.

Overview of this thesis

In sum, at the core of this thesis is the question how expectations influence 

perception. A central question is whether prediction may constitute a fundamental 

operating principle of the sensory brain. I approach perception as a process of 

unconscious perceptual inference, in line with predictive processing accounts of 

perception [11–13], as this approach allows me to address these core questions guided by 

a well-established framework. In particular, I will focus on how expectations, derived 

from statistical regularities in the sensory world, modulate processing throughout the 

ventral visual stream. The key neural phenomenon will be expectation suppression, 

the attenuated sensory response to predicted stimuli, which I view through two 

lenses, as a signature of perceptual inference, possibly reflecting prediction errors, 

and a consequence of statistical learning.

Chapter 2 will start by exploring the extent to which complex object expectations, 

derived by incidental statistical learning, affect sensory processing throughout 

the ventral visual stream, as measured by fMRI. Moreover, in this chapter I will 

also investigate how population representations are modulated by expectations, 

contrasting the sharpening and dampening accounts.
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Chapter 3 aims to assess whether the sensory consequence of statistical learning, 

expectation suppression, arises automatically or is dependent on attention, using 

fMRI. In addition, I further chart the characteristics of expectation suppression by 

investigating the stimulus-specificity of object level predictions across the ventral 

visual stream. 

Chapter 4 will assess what type of neural modulation best explains expectation 

suppression, using forward models and a combined analysis of the fMRI datasets 

of chapters 2 and 3. To this end I will contrast sharpening and dampening models of 

expectations, as well as models implementing a feature-unspecific suppression.

Chapter 5 is devoted to exploring the limits of incidental statistical learning. A 

particular focus is on the modality-specificity of statistical learning, which is assessed 

by comparing learning of cross-modal and unimodal associations. Moreover, the 

capacity to learn from probabilistic compared to deterministic associations is 

explored.

Chapter 6 summarizes and integrates the results presented in chapters 2-5. Moreover, 

an alternative account, casting expectation suppression as reflecting attention 

modulations instead of prediction error coding, will be discussed. I will additionally 

review potential explanations for the discrepancy in the expectation literature 

yielding sharpening and dampening respectively. Finally, I will highlight the core 

conclusions we can draw from the work presented in this thesis and the wider 

literature, focusing on how expectations influence perceptual processing.







CHAPTER 2

Suppressed sensory response to 
predictable object stimuli throughout 
the ventral visual stream

This chapter has been published as: 

Richter, D., Ekman M., de Lange FP (2018) Suppressed Sensory Response to 

Predictable Object Stimuli throughout the Ventral Visual Stream. J. Neurosci. 

38, 7452–7461. doi.org/10.1523/JNEUROSCI.3421-17.2018 
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Abstract

Prediction plays a crucial role in perception, as prominently suggested by 

predictive coding theories. However, the exact form and mechanism of predictive 

modulations of sensory processing remain unclear, with some studies reporting a 

downregulation of the sensory response for predictable input, while others observed 

an enhanced response. In a similar vein, downregulation of the sensory response 

for predictable input has been linked to either sharpening or dampening of the 

sensory representation, which are opposite in nature. In the present study we set out 

to investigate the neural consequences of perceptual expectation of object stimuli 

throughout the visual hierarchy, using fMRI in human volunteers. Participants 

of both sexes were exposed to pairs of sequentially presented object images in a 

statistical learning paradigm, in which the first object predicted the identity of the 

second object. Image transitions were not task relevant; thus all learning of statistical 

regularities was incidental. We found strong suppression of neural responses to 

expected compared to unexpected stimuli throughout the ventral visual stream, 

including primary visual cortex (V1), lateral occipital complex (LOC), and anterior 

ventral visual areas. Expectation suppression in LOC scaled positively with image 

preference and voxel selectivity, lending support to the dampening account of 

expectation suppression in object perception.   
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Introduction

Our environment is structured by statistical regularities. Making use of such 

regularities by anticipating upcoming stimuli is of great evolutionary value, as 

it enables the agent to predict future states of the world and prepare adequate 

responses, which in turn can be executed faster or more accurately [51,58,59]. Our brains 

are exquisitely sensitive to these statistical regularities [31,71–73]. In fact, it has been 

suggested that a core operational principle of the brain is prediction [74] and prediction 

error minimization [12]. Statistical learning is an automatic learning process by which 

statistical regularities are extracted from the environment [73], without explicit 

awareness or effort by the observer [50,75], even under concurrent cognitive load [76]. 

These statistical regularities can be used to form predictions about upcoming input, 

with effects of statistical learning being evident even 24 hours after exposure [51].

The neural consequences of perceptual predictions have been investigated 

extensively, but conflicting results have emerged. For example, Turk-Browne et al. [31]  

reported larger neural responses to predictable than random sequences of stimuli 

in human object-selective lateral occipital complex (LOC). However, contrary to 

this notion, neurons in monkey inferotemporal cortex (IT), the putative homologue 

of human LOC [77], showed reduced responses to expected compared to unexpected 

object stimuli [23,26]. This is in line with findings in human primary visual cortex (V1), 

which revealed that visual gratings of an expected orientation elicit a suppressed 

neural response compared to gratings of an unexpected orientation [18,78]. Even 

though there is superficial agreement between these studies, the exact form of 

expectation suppression, in terms of the underlying effect of expectations on the 

neural representations of stimuli, appeared to be opposite. Kok et al. [18] observed the 

strongest suppression in voxels that were tuned away from the expected stimulus, 

resulting in a sparse, sharpened population code. Electrophysiological studies 

in macaques on the other hand have reported a positive scaling of expectation 

suppression with image preference [23], suggesting that sensory representations are 

dampened for expected stimuli [79].

In sum, several discrepancies remain concerning the neural basis of perceptual 

expectation, which may be related to differences in species (macaque vs. human), 

measurement technique (spike rates vs. fMRI BOLD), and cortical hierarchy (early 

vs. late). In the current study, we set out to examine the existence and characteristics 

of expectation suppression throughout the visual hierarchy, using a paradigm that 

closely matches a set of previous studies on object prediction in macaque monkeys 

[23,27]. This allowed us to better compare and generalize between species, methods, 

and different levels of the cortical hierarchy. First we exposed participants to pairs 
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of sequentially presented object images in a statistical learning paradigm. Next, we 

recorded neural responses, using whole-brain fMRI, to expected and unexpected 

object image pairs. By contrasting responses to expected and unexpected pairs we 

probed whether a suppression of expected object stimuli is evident throughout 

the ventral visual stream, and in particular in object-selective cortex. Moreover, 

by investigating expectation suppression as a function of image preference and 

voxel selectivity we contrasted sharpening with dampening (scaling) accounts of 

expectation suppression.

In brief, our results show that expectation suppression is ubiquitous throughout the 

human ventral visual stream, including object-selective LOC. Furthermore, we found 

that expectation suppression positively scales with object image preference and voxel 

selectivity within object-selective LOC. This suggests that object predictions dampen 

sensory representations in object-selective regions.

Materials and Methods

Participants

Twenty-four healthy, right-handed participants (17 female, aged 23.3 ± 2.4 years, mean 

± SD) were recruited from the Radboud research participation system. The sample size 

was based on an a priori power calculation, computing the required sample size to 

achieve a power of 0.8 to detect an effect size of Cohen’s d ≥ 0.6, at alpha = 0.05, for a 

two-tailed within subjects t-test. Participants were prescreened for MRI compatibility, 

had no history of epilepsy or cardiac problems, and normal or corrected-to-normal 

vision. Written informed consent was obtained before participation. The study 

followed institutional guidelines of the local ethics committee (CMO region Arnhem-

Nijmegen, The Netherlands). Participants were compensated with 42 euro for study 

participation. Data from one subject was excluded due to excessive tiredness and poor 

fixation behavior. One additional subject was excluded from all ROI based analyses, 

since no reliable object-selective LOC mask could be established due to subpar fixation 

behavior during the functional localizer.

Experimental Design and Statistical Analysis

Stimuli and experimental paradigm

Main task. Participants were exposed to two object images in quick succession. Each 

image was presented for 500 ms without interstimulus interval, and an intertrial 

interval of 1500-2500 ms during behavioral training and 4110-6300 ms during fMRI 
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scanning (see Figure 2.1A for a single trial). A fixation bullseye (0.5° visual angle 

in size) was presented throughout the run. For each participant 16 object images 

were randomly selected from a pool of 80 stimuli (also see: Stimuli). Eight images 

were assigned as leading images, i.e. appearing first on trials, while the other eight 

images served as trailing images, occurring second. Image pairs and the transitional 

probabilities between them were determined by the transitional probability matrix 

depicted in Figure 2.1B, based on the transition matrix used by Ramachandran et al. 

[27]. The expectation manipulation consisted of a repeated pairing of images in which 

the leading image predicted the identity of the trailing image, thus over time making 

the trailing image expected given the leading image. Importantly, the transitional 

probabilities governing the associations between images were task irrelevant, 

since participants were instructed to respond, by button press, to any upside-down 

versions of the images, the occurrence of which was not related to the transitional 

probability manipulation and could not be predicted. Upside-down images (target 

trials) occurred on ~9% of trials. Participants were not informed about the presence of 

any statistical regularities and instructed to maintain fixation on the central fixation 

bulls-eye. Trial order was fully randomized.

FIGURE 2.1  Paradigm overview.

(A) Depicts a single trial, with two example images and superimposed fixation bullseye. 
Leading images and trailing images were presented for 500 ms each, without interstimulus 
interval, followed by an intertrial interval of 4110-6300 ms (fMRI session; 1500-2500 ms 
during behavioral training). Participants responded to upside-down images by button press; 
the image at either position (leading or trailing) could be upside-down. (B) Shows the utilized 
image transition matrix determining image pairs. Eight leading images (L1 – L8) and eight 
trailing images (T1- T8) were used for each participant. Conditional probability conditions 
are highlighted and their respective conditional probabilities during training are listed on 
the right; condition 1:1 (orange), 2:1 condition (green), 1:2 condition (blue). Cells with dots 
indicate expected image pairs, while empty cells denote unexpected pairs. 

 

During behavioral training only expected image pairs were presented on a total of 

1792 trials, split into 8 blocks with short breaks in between blocks. Thus, during this 
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session the occurrence of image L1 was perfectly predictive of image T1 (i.e. P(T1|L1) 

= 1; see Figure 2.1B). Apart from these trials, which constituted the 1:1 conditional 

probability condition, there were also trials with a 2:1 and 1:2 image pairing. In the 2:1 

conditional probability condition the leading image was perfectly predictive of the 

trailing image (e.g. P(T3|L3) = 1), but two different leading images predicted the same 

trailing image, thereby reducing the conditional probability of the leading image 

given a particular trailing image (i.e. P(L3|T3) = 0.5). Lastly, the 1:2 condition consisted 

of a reduced predictive probability of the trailing image given the leading image, as 

such image L7 for instance was equally predictive of images T5 and T7 (i.e. P(T5|L7) = 

0.5 and P(T7|L7) = 0.5).

On the next day participants performed one additional behavioral training block, 

consisting of 224 trials, and another 48 practice trials in the MRI during acquisition 

of the anatomical image. The task during the subsequent fMRI experiment was 

identical to the training session, except that also unexpected image pairs occurred. 

Nonetheless, the expected trailing image was still most likely to follow a given 

leading image, namely on 56.25% of trials compared to 6.25% for each unexpected 

trailing image (1:1 condition). It is important to note that each trailing image is only 

(un-)expected by virtue of its temporal context, i.e. which leading image it has been 

preceded by. Thus, each trailing images serves both as an expected and unexpected 

image depending on context. Additionally, trial order was fully randomized, thus 

rendering systematic effects of trial history unlikely. In sum, any difference between 

expected and unexpected occurrences cannot be explained in terms of different 

base rates of the trailing images, adaptation or trial history. Since intertrial intervals 

were longer in the fMRI session, and responses to upside-down images therefore 

occurred at a lower rate, potentially reducing participants’ vigilance, the percentage 

of upside-down images was increased to ~11% of trials. As during the behavioral 

training session, in the main fMRI task participants were not informed about the 

presence of transitional probabilities, and there was no correlation between the 

image transitions and the occurrence of upside-down images. In total the MRI main 

task consisted of 512 trials, split into four equal runs, with an additional three resting 

blocks (each 12 sec) per run. Feedback on behavioral performance (percent correct 

and mean response time) was provided after each run. To ensure adequate fixation 

on the fixation bullseye, an infrared eye tracker (SensoMotoric Instruments, Berlin, 

Germany) was used to record and monitor eye positions. 

Functional localizer. The main task was followed by a functional localizer, which 

was used for a functional definition of object-selective LOC for each participant, and 

to determine image preference for each voxel within visual cortex in an expectation 

neutral context. Finally, localizer data served as independent training data for the 
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multi-voxel pattern analysis (see: Data analysis, Multi-voxel pattern analysis). In a 

block design each object image was presented four times, each time flashing at 2 Hz 

(300 ms on, 200 ms off) for 11 sec. The utilized stimuli were the same object images as 

shown during the fMRI main task. Additionally, a globally phase-scrambled version 

of each image [80] was shown twice, also flashing at 2 Hz for 11 sec. The order of objects 

images and scrambles was randomized. Participants were instructed to fixate the 

bullseye and respond by button press whenever the fixation bullseye dimmed in 

brightness.

Questionnaire. Following the fMRI session, participants filled in a brief questionnaire 

probing their explicit knowledge of the image transitions. Knowledge of each of the 

eight image pairs was tested by presenting participants with one leading image at a 

time, instructing them to select the most likely trailing image.

Categorization task. Finally, outside the scanner, participants performed a 

categorization task. During this task, participants indicated, by button press, whether 

the trailing image would fit into a shoebox (yes/no decision); similar to Dobbins 

et al. [81], and Horner and Henson [82]. This task was aimed at assessing any implicit 

reaction time or accuracy benefits due to incidental learning, since the statistical 

regularities, learned during the previous parts of the experiment, could be used to 

predict the correct response before the trailing image appeared. For each participant 

the same images and transitions were used as during their fMRI task. Furthermore, it 

was ensured that half of the trailing images in each conditional probability condition 

(1:1, 1:2, 2:1) fit into a shoebox, while the other half did not fit. A brief practice block 

was used to make sure that participants correctly classified the object images and 

understood the task. Participants were not informed about the intention behind this 

task, nor were they instructed to make use of the statistical regularities, in order to 

avoid influencing their behavior. A full debriefing took place after the categorization 

task.

Stimuli. Object stimuli were taken from Brady et al. [83], and consisted of a large 

collection of diverse full-color photographs of objects. Of this full set of images, a 

subset of 80 images was selected; 40 objects fitting into a shoebox, and 40 objects 

not fitting into a shoebox. Images spanned approximately 5° x 5° visual angle and 

were presented in full-color on a mid-grey background. During training stimuli were 

displayed on a LCD screen and back-projected during MRI scanning (EIKI LC-XL100 

projector; 1024 x 768 pixel resolution, 60 Hz refresh rate), visible using an adjustable 

mirror. Since images were drawn at random per participant, each image could occur 

in any condition or position, thereby eliminating potential effects induced by 

individual image features.



CHAPTER 2

32

fMRI data acquisition

Functional and anatomical images were collected on a 3T Skyra MRI system 

(Siemens, Erlangen, Germany), using a 32-channel headcoil. Functional images were 

acquired using a whole-brain T2*-weighted multiband-8 sequence (time repetition 

[TR] / time echo [TE] = 730/37.8 ms, 64 slices, voxel size 2.4 mm isotropic, 50° flip 

angle, A/P phase encoding direction). Anatomical images were acquired with a T1-

weighted magnetization prepared rapid gradient echo sequence (MP-RAGE; GRAPPA 

acceleration factor = 2, TR/TE = 2300/3.03 ms, voxel size 1 mm isotropic, 8° flip angle).

Data analysis

Behavioral data analysis. Behavioral data from the categorization task was analyzed 

in terms of reaction time (RT) and accuracy. All RTs exceeding 3 SD above mean and 

below 200 ms were excluded as outliers (2.0% of trials). Since unexpected trailing 

image trials during the categorization task may require a change in the response, any 

differences in RT and accuracy between the expected and unexpected conditions may 

reflect a combination of surprise and response adjustment, thereby inflating possible 

RT and accuracy differences. Therefore, only unexpected trials requiring the same 

response as the expected image were analyzed, yielding an unbiased comparison 

of the effect of expectation. RTs for expected and unexpected trailing image trials 

were averaged separately per participant and subjected to a paired t-test. The error 

rate was also calculated separately for expected and unexpected trailing image trials 

per subject and analyzed with a paired t-test. Additionally, the effect size of both 

differences was calculated in terms of Cohen’s dz [84]. All standard errors of the mean 

presented here were calculated as the within-subject normalized standard error [85] 

with Morey’s [86] bias correction.

fMRI data preprocessing. fMRI data preprocessing was performed using FSL 5.0.9 

(FMRIB Software Library; Oxford, UK; www.fmrib.ox.ac.uk/fsl; [87], RRID:SCR_002823). 

The preprocessing pipeline included brain extraction (BET), motion correction 

(MCFLIRT), temporal high-pass filtering (128 s), and spatial smoothing for univariate 

analyses (Gaussian kernel with full-width at half-maximum of 5 mm). No smoothing 

was applied for multivariate analyses, nor for the voxel-wise image preference analysis. 

Functional images were registered to the anatomical image using FLIRT (BBR) and to 

the MNI152 T1 2mm template brain (linear registration with 12 degrees of freedom). The 

first eight volumes of each run were discarded to allow for signal stabilization. 

Univariate data analysis. To investigate expectation suppression across the ventral 

visual stream, voxel-wise general linear models (GLM) were fit to each subject’s run 
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data in an event-related approach using FSL FEAT. Separate regressors for expected 

and unexpected image pairs were modeled within the GLM. All trials were modeled 

with one second duration (corresponding to the duration of the leading and trailing 

image combined) and convolved with a double gamma haemodynamic response 

function. Additional nuisance regressors were added, including one for target trials 

(upside-down images), instruction and performance summary screens, first-order 

temporal derivatives for all modeled event types, and 24 motion regressors (six 

motion parameters, the derivatives of these motion parameters, the squares of the 

motion parameters, and the squares of the derivatives; comprising FSL’s standard 

+ extended set of motion parameters). The contrast of interest for the whole-brain 

analysis compared the average BOLD activity during unexpected minus expected 

trials, i.e. expectation suppression. Data was combined across runs using FSL’s 

fixed effect analysis. For the across participants whole-brain analysis, FSL’s mixed 

effect model FLAME 1 was utilized. Multiple comparison correction was performed 

using Gaussian random-field based cluster thresholding, as implemented in FSL, 

using a cluster-forming threshold of z > 3.29 (i.e. p < 0.001, two-sided) and a cluster 

significance threshold of p < 0.05. An identical analysis was performed to assess the 

influence of the different conditional probability conditions (see: Main task), except 

that the expected and unexpected event regressors were split into their respective 

conditional probability conditions (1:1, 1:2, 2:1), thus resulting in a GLM with six 

regressors of interest. 

Planned region of interest analyses. Within each ROI (V1 and LOC; see: Region of 

interest definition), the parameter estimates for the expected and unexpected image 

pairs were extracted separately from the whole-brain maps. Per subject the mean 

parameter estimate within the ROIs was calculated and divided by 100 to yield an 

approximation of mean percent signal change compared to baseline [88]. These mean 

parameter estimates were in turn subjected to a paired t-test and the effect size of 

the difference calculated (Cohen’s dz). For the conditional probability manipulation, 

a similar ROI analysis was performed, except that the resulting mean parameter 

estimates were subjected to a 3x2 repeated measures ANOVA with conditional 

probability condition (1:1, 2:1, 1:2) and expectation (expected, unexpected) as factors. 

For this analysis we calculated eta-squared (η2) as a measure of effect size.

Multi-voxel pattern analysis. Multi-voxel pattern analysis (MVPA) was performed 

per subject on mean parameter estimate maps per trailing image. These maps were 

obtained by fitting voxel-wise GLMs per trial for each subject, following the ‘least 

squares separate’ approach outlined in Mumford et al. [89]. In brief, a GLM is fit for 

each trial, with only that trial as regressor of interest and the remaining trials as one 

regressor of no interest. This was done for the functional localizer and main task 
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data. The resulting parameter estimate maps of the functional localizer were used 

as training data for a multi-class SVM (classes being the eight trailing images), as 

implemented in Scikit-learn (SVC; [90], RRID:SCR_002577). Decoding performance 

was tested per subject on the mean parameter estimate maps from the main task data 

for each trailing image, split into expected and unexpected image pairs. The choice to 

decode mean parameter estimate maps, instead of single trial estimates, was made 

after observing that image decoding performance when decoding individual trials 

was close to chance, indicating a lack of sensitivity to detect potential differences 

between expected and unexpected image pairs. This decision was based on an 

independent MVPA collapsed over expected and unexpected image pairs, without 

inspection of the contrast of interest. Expected image pair trials are by definition 

more frequent, which may in turn yield a more accurate mean parameter estimate. 

Thus, stratification by random sampling was used to balance the number of expected 

and unexpected image pairs per trailing image, thereby removing potential bias. 

In short, for each iteration (n = 1,000) a subset of expected trials was randomly 

sampled to match the number of unexpected occurrences of that trailing image. 

Finally, decoding performance was analyzed in terms of mean decoding accuracy. To 

this end, the class with the highest probability for each test item was chosen as the 

predicted class and the proportion of correct predictions calculated. Mean decoding 

performances for expected and unexpected image pairs were subjected to a two-

sided, one sample t-test against chance decoding performance (chance level = 12.5%). 

If decoding was above chance for the expected and unexpected image pairs, decoding 

performances between expected and unexpected pairs were compared by means of 

a paired t-test and the effect size was calculated. In short, the classifier was used to 

distinguish between the eight trailing images, after being trained on the single-trial 

parameter estimates from the functional localizer. The performance of the classifier 

was tested on the per-image parameter estimates from the main task split into the 

expected and unexpected condition.

Image preference analysis. For the voxel-wise image preference analysis the single 

trial GLM parameter estimate maps, as outlined in the MVPA section above, were 

utilized. Within each participant the parameter estimate maps of the functional 

localizer were averaged for each trailing image, thus yielding an average activation 

map induced by each trailing image in an expectation free, neutral context. The 

same was done for the main task data, but for expected and unexpected occurrence 

of each trailing image separately. Then, for each voxel, trailing images were ranked 

according to the response they elicited during the functional localizer. These 

rankings were applied to the main task data, resulting in a vector per voxel, consisting 

of the mean activation (parameter estimate) elicited by the trailing images during 

the main task, ranked from the least to most preferred image based on the context 
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neutral, independent functional localizer data. This was done separately for expected 

and unexpected occurrence of each trailing image. Within each ROI the mean 

parameter estimates of expected and unexpected image pairs per preference rank was 

calculated. For each ROI linear regressions were fit to the ranked parameter estimates, 

one for expected and one for unexpected pairs. A positive regression slope would 

thus indicate that the ranking from the functional localizer generalized to the main 

task, which was considered a prerequisite for any further analysis. This was tested 

by subjecting the slope parameters across subjects to a two-tailed one sample t-test, 

comparing the obtained slopes against zero. Furthermore, this analysis assumes a 

linear relation between the response parameter estimates and preference rank. Of 

note, a strong non-linear relationship, in either of the expectation conditions, could 

pose a problem for the interpretation of the resulting slope parameter. Therefore, 

we tested for linearity, by comparing the model fit between the linear model and a 

second order polynomial model. The data was deemed sufficiently linear, if the fit of 

the linear model was superior to the fit of the non-linear model as index by a smaller 

Bayesian information criterion (BIC; [91]). If these requirements were met for the 

expected and unexpected conditions, the difference between slope parameters was 

compared by a two-tailed paired t-test. If the amount of expectation suppression (i.e. 

unexpected minus expected) indeed scales with image preference (i.e. dampening), 

then we should find the slope parameter for the unexpected condition regression line 

to be significantly larger than for the expected condition. The opposite prediction, a 

larger slope parameter for the expected condition, is made by the sharpening account. 

For this comparison the effect size was also calculated in terms of Cohen’s dz. 

The rationale of this analysis is that a dampening mechanism suppresses responses 

in highly active neurons (i.e. those neurons which are tuned towards the expected 

feature) more than in less active neurons (those which are tuned away). Thus, when 

responses within a voxel are strong to a particular image more neurons can be 

suppressed by dampening than when a less preferred image is shown. Since a neural 

sharpening mechanism, opposite to dampening, would particularly suppress less 

active neurons compared to highly active ones, the reverse pattern would be evident 

under sharpening.

In addition to the ROI based approach, we also performed a whole brain version of 

the image preference analysis in order to provide an overview of where dampening 

or sharpening might be evident beyond our a priori defined ROIs. The analysis was 

identical to the ROI based approach, outlined above, except for that the amount of 

expectation suppression per voxel and preference rank was calculated in order to 

display results across the whole brain. Regressions were thus fit to expectation 

suppression as function of image preference rank for each voxel and subject. The fit 
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was constrained to voxel in which the response to expected and unexpected stimuli 

showed a significant positive slope with preference rank, thereby indicating that the 

image preference ranking generalized from the localizer to the main task. Unlike in 

the ROI based approach, the data was spatially smoothed using a Gaussian kernel 

with full-width at half-maximum of 8 mm. The slope parameters across subjects 

were tested against zero in each voxel. Since in this analysis expectation suppression 

was expressed as a function of image preference rank, from least to most preferred, 

positive slopes indicate support for dampening, while negative slopes are evidence 

for sharpening.

Bayesian analyses. In order to assess whether any non-significant results constituted 

a likely absence of an effect, or rather indicated a lack of statistical power to detect 

possible differences, corresponding Bayesian tests were performed. All Bayesian 

analyses were carried out in JASP ([92], RRID:SCR_015823) using default settings; 

i.e. paired and one-sample t-tests used a Cauchy prior width of 0.707 and repeated 

measures ANOVAs used a prior with the following settings: r scale fixed effects = 0.5, 

r scale random effects = 1, r scale covariates = 0.354. The number of samples of the RM 

ANOVA was increased to 100,000 and Bayes Factors for the inclusion of the respective 

factors are reported (BFinclusion), which yields the evidence for the inclusion of that 

factor averaged over all models in which the factor is included [93]. Interpretations of 

the resulting Bayes Factors are based on the classification by Lee and Wagenmakers 

[94].

Region of interest definition. The two a-priori regions of interest, object-selective 

LOC and V1, were defined per subject based on data that was independent from the 

main task. In order to obtain object-selective LOC, GLMs were fit to the functional 

localizer data of each subject, modelling object image and scrambled image events 

separately with a duration corresponding to their display duration. First-order 

temporal derivatives, instruction and performance summary screens, as well as 

motion regressors were added as nuisance regressors. The contrast, object images 

minus scrambles, thresholded at z > 5 (uncorrected; i.e. p < 1e-5), was utilized to select 

regions per subject selectively more activated by intact object images compared to 

scrambles [95,96]. The threshold was lowered on a per subject basis, if the LOC mask 

contained less than 300 voxels in native volume space. The individual functional 

masks were constrained to anatomical LOC using an anatomical LOC mask obtained 

from the Harvard-Oxford cortical atlas (RRID:SCR_001476), as distributed with FSL. 

Finally, a decoding analysis of object images (also see: Multi-voxel pattern analysis) 

was performed using a searchlight approach (6 mm radius) on the functional localizer 

data, using a k-fold cross-validation scheme with four folds. This MVPA yielded 

a whole brain map of object image decoding performance, based on which the 200 
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most informative LOC voxels (in native volume space) in terms of image identity 

information were selected from the previously established LOC masks. This was 

done to ensure that the final masks contain voxels which best discriminate between 

the different object images. Freesurfer 6.0 (‘recon-all’; [97], RRID:SCR_001847) was 

utilized to extract V1 labels (left and right) per subject based on their anatomical 

image. Subsequently, the obtained labels were transformed back to native space using 

‘mri_label2vol’ and combined into a bilateral V1 mask. The same searchlight approach 

mentioned above was used to constrain the anatomical V1 masks to the 200 most 

informative V1 voxels concerning object identity decoding. To verify that our results 

were not unique to the specific (but arbitrary) ROI size, we repeated all ROI analyses 

with ROI masks ranging from 50 to 300 voxels in steps of 50 voxels.

Software

FSL 5.0.9 (FMRIB Software Library; Oxford, UK; www.fmrib.ox.ac.uk/fsl; [87], 

RRID:SCR_002823) was utilized for preprocessing and analysis of fMRI data. 

Additionally, custom Matlab (The MathWorks, Inc., Natick, Massachusetts, 

United States, RRID:SCR_001622) and Python (Python Software Foundation, 

RRID:SCR_008394) scripts were used for additional analyses, data extraction, 

statistical tests, and plotting of results. The following toolboxes were used: 

NumPy ([98], RRID:SCR_008633), SciPy ([99], RRID:SCR_008058), Matplotlib ([100], 

RRID:SCR_008624), PySurfer (https://pysurfer.github.io/, RRID:SCR_002524), Mayavi 

([101], RRID:SCR_008335), and Scikit-learn ([90], RRID:SCR_002577). Whole-brain results 

are displayed using Slice Display [102] using a dual-coding data visualization approach 

[103], with color indicating the parameter estimates and opacity the associated z 

statistics. Additionally, PySurfer was used to display whole-brain results on an 

inflated cortex, with surface labels from the Desikan-Killiany atlas [104]. Bayesian 

analyses were performed using JASP 0.8.1.1 ([92], RRID:SCR_015823). Stimulus 

presentation was done using Presentation® software (version 18.3, Neurobehavioral 

Systems, Inc., Berkeley, CA, RRID:SCR_002521).

Results

Expectation suppression throughout the ventral visual stream

We first examined expectation suppression within our a priori defined ROIs, V1 and 

object-selective LOC. We observed a significantly larger BOLD response to unexpected 

compared to expected image pairs, both in V1 (t(21) = 3.20, p = 0.004, Cohen’s dz = 0.68, 

Figure 2.2C) and object-selective LOC (t(21) = 5.03, p = 5.6e-5, Cohen’s dz = 1.07, Figure 
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2.2C). To ensure that the results are not dependent on the (arbitrarily chosen) mask 

size of the ROIs, the analyses were repeated for ROIs of sizes between 50-300 voxels 

(691-4147mm3); the direction and statistical significance of all effects was identical 

for all ROI sizes.

A whole-brain analysis, investigating effects of perceptual expectation across the 

brain, revealed an extended statistically significant cluster (Figure 2.2A, black 

contours) of expectation suppression across the ventral visual stream. As also evident 

in Figure 2.2B, cortical areas showing significant expectation suppression included 

large parts of bilateral object-selective LOC, bilateral fusiform gyrus, bilateral inferior 

parietal cortex and right posterior parahippocampal gyrus. Thus, there is substantial 

support for a wide-spread expectation suppression effect across the ventral visual 

stream.

Next, we assessed the neural effect of the conditional probability conditions within 

V1 and LOC. While this analysis confirmed a weaker response for expected items in 

V1 (F(1,21) = 6.39, p = 0.020, η2 = 0.233) and LOC (F(1,21) = 19.50, p = 2.4e-4, η2 = 0.481), there 

was no significant modulation by conditional probability, nor an interaction between 

conditional probability and expectation in either V1 (conditional probability: F(2,42) 

= 2.02, p = 0.145, η2 = 0.088; interaction: F(2,42) = 1.19, p = 0.315, η2 = 0.053) or LOC 

(conditional probability: F(2,42) = 1.90, p = 0.162, η2 = 0.083; interaction: F(2,42) = 0.92, 

p = 0.407, η2 = 0.042). Bayesian analyses yielded very strong support for the effect of 

expectation in LOC (BFIncl. = 35.403), but provided moderate evidence that conditional 

probability did not have an effect (BFIncl. = 0.327), and neither did the interaction of 

expectation and conditional probability (BFIncl. = 0.290). In V1 results remained 

inconclusive, since there was only anecdotal evidence against an effect of expectation 

(BFIncl. = 0.426) and conditional probability (BFIncl. = 0.373), but moderate evidence 

against an effect of the interaction (BFIncl. = 0.172). Thus, since there is no evidence for 

an effect of the conditional probability manipulation, we collapse across the three 

different conditional probability conditions for all subsequent analyses. 
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FIGURE 2.2  Univariate fMRI results. 

(A) Expectation suppression throughout the ventral visual stream. Displayed are parameter 
estimates for unexpected image pairs minus expected pairs overlaid on the MNI152 2mm 
template. Color represents the parameter estimates, with red-yellow clusters indicating 
expectation suppression, and opacity depicting the associated z statistics. Black contours 
outline statistically significant clusters (GRF cluster corrected), which include significant 
expectation suppression in superior and inferior divisions of LOC, temporal occipital 
fusiform cortex, and posterior parahippocampal gyrus. (B) Expectation suppression displayed 
on an inflated cortex reconstruction. Z statistics of the expectation suppression contrast 
(cluster thresholded) are displayed. Visible are large clusters showing significant expectation 
suppression in LOC, fusiform gyrus (FG), inferior parietal cortex (IPC) and posterior 
parahippocampal gyrus (PHG). (C) Expectation suppression within V1 and object-selective 
LOC. Displayed are parameter estimates ± within-subject standard error for responses to 
expected and unexpected images pairs. In both ROIs, V1 (left bar plot) and LOC (right bar plot), 
BOLD responses to unexpected image pairs were significantly stronger than to expected image 
pairs. ** p < .01, *** p < .001. 
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Perceptual expectations dampen sensory representation in LOC 

To examine whether sharpening or dampening of sensory representations 

underlies the observed expectation suppression effect in V1 and LOC, an image 

preference analysis was conducted. In short, BOLD responses were regressed on 

image preference rank, with dampening predicting a steeper slope for unexpected 

compared expected images and sharpening predicting the opposite (see Methods for 

details). First, we tested whether the relation between voxel-level BOLD responses 

and image preference rank was better described by a linear model than a polynomial 

model. There was higher model evidence for linear compared to non-linear response 

profiles in both areas and conditions (V1, expected: BIClinear = 97.02 < BICpolynomial 

= 97.25; V1, unexpected: BIClinear = 95.85 < BICpolynomial = 96.09; LOC, expected: BIClinear 

= 94.82 < BICpolynomial = 95.01; LOC, unexpected: BIClinear = 94.99 < BICpolynomial = 95.28). 

Furthermore, results, depicted in Figure 2.3A, reveal positive slopes within V1 

(expected: t(21) = 9.11, p = 9.6e-9, Cohen’s dz = 1.94; V1 unexpected: t(21) = 9.90, p = 2.3e-9,  

Cohen’s dz = 2.11), as well as in LOC (expected: t(21) = 3.39, p = 0.003, Cohen’s dz = 0.72; 

LOC unexpected: t(21) = 7.14, p = 4.8e-7, Cohen’s dz = 1.52), confirming that the image 

preference ranking from the functional localizer data generalized to the main task. 

This indicates a stable, reproducible sensory code and allows for an analysis of the 

difference in slopes between expected and unexpected image pairs. Crucially, image 

preference slopes were significantly steeper for unexpected than expected image 

pairs in LOC (t(21) = 2.18, p = 0.041, Cohen’s dz= 0.47). This means that the amount of 

expectation suppression (i.e. the difference in the two regression lines in Figure 2.3A) 

increased with the image preference rank in object-selective LOC. A control analysis 

confirmed that the results were independent of the number of voxels in the ROI mask 

(mask sizes 50-300 voxels). There was no statistically significant difference in slopes 

between the expectation conditions in V1 (t(21) = 1.20, p = 0.242, Cohen’s dz = 0.26), 

regardless of the number of voxels in the ROI mask (50-300 voxels). In order to explore 

whether there was evidence for the absence of dampening in V1 a Bayesian t-test was 

performed on the difference of the image preference slopes (unexpected vs. expected) 

in the V1 ROI. This analyses yielded a BF10 < 1/3 for all V1 ROI sizes, except for the 200 

voxel mask (BF10 = 0.423). Together this suggests that there is moderate evidence for 

the absence of dampening in V1. 
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FIGURE 2.3  Results of image preference analysis. 

(A) Image preference analysis results in V1 and object-selective LOC. Parameter estimates ± 
within-subject standard error are displayed as a function of voxel-wise image preference, 
ranked from the least to the most preferred image rank based on the functional localizer. 
Superimposed is the mean regression line fit of the subject-wise regressions for expected 
and unexpected image pairs separately (see Methods). The left line plot shows responses 
to expected and unexpected image pairs within the V1 ROI. The fitted regression lines for 
expected and unexpected are parallel; i.e. no difference in slopes. The right plot displays image 
preference results for object-selective LOC, showing a steeper slope for the unexpected image 
pair regression line compared to the corresponding expected image pair regression line. (B) 
Image preference analysis results displayed on an inflated cortex reconstruction. Z statistic 
(uncorrected) of expectation suppression as function of image preference rank is shown 
in color, with red indicating more suppression for preferred stimuli (dampening) and blue 
indicating less suppression for preferred stimuli (sharpening). Visible are clusters showing 
a dampening effect largely in bilateral LOC and to a lesser extend in fusiform gyrus (FG). (C) 
Expectation suppression (unexpected – expected) as function of voxel selectivity, ranked from 
the least to the most selective voxels, in object-selective LOC. Displayed are the linear models 
per subject, the mean linear model (group mean), and the mean data for each selectivity ranked 
voxel. The amount of expectation suppression increases as a function of voxel selectivity. * p 
< .05, ** p < .01.



CHAPTER 2

42

In order to provide an additional overview of the localization of the dampening effect 

beyond our a priori ROIs we performed a whole brain analysis of the image preference 

analysis. Results depicted in Figure 2.3B, using a liberal threshold, suggest clusters 

of dampening to be primarily located in LOC and to a lesser degree in fusiform gyrus.

After showing a dampening of representations in object-selective LOC, we further 

explored whether this dampening at the voxel level is likely to reflect neural 

dampening, as also evident in Meyer and Olson [23] and Kumar et al. [79]. A key 

problem is that under certain conditions a neural sharpening mechanism can 

produce voxel level dampening, as also suggested by Alink et al. [105] in the case of 

repetition suppression. Thus, we performed an additional analysis in which we 

analyzed expectation suppression (i.e. unexpected minus expected) as a function of 

voxel selectivity (i.e. slope of the response amplitude to preference ranked images). 

We reasoned that under a dampening account, selective voxels, showing strong 

responses to some, but weak responses other stimuli, are on average more likely to 

yield strong expectation suppression than low selectivity voxels. Sharpening on the 

other hand predicts the opposite pattern, since highly selective voxels should be 

less suppressed by sharpening, or even enhanced in their response, because more 

activated neurons are on average tuned towards the expected stimulus, compared to 

voxels with lower selectivity. For this analysis we first established a voxel selectivity 

ranking. The rank was based on the slope of activity regressed onto image preference 

during the localizer for each voxel. The rationale is that voxels which are more 

selective in their response yield a larger slope parameter, since the activity elicited 

by different images shows a larger difference than in voxels with low selectivity (i.e. 

those that respond similarly to different images). After obtaining the slope parameter 

of image preference per voxel, we ranked voxels by this slope coefficient, reflecting 

voxel selectivity during the localizer. Next we regressed expectation suppression 

during the main task onto voxel selectivity rank. As explained above, we reasoned 

that dampening predicts a positive slope for this regression, while sharpening 

would predict a negative slope. Results from LOC, depicted in Figure 2.3C, showed 

a significant positive slope of expectation suppression with voxel selectivity (t(21) = 

3.00, p = 0.007, Cohen’s dz = 0.64), demonstrating that highly selective voxels are more 

suppressed by expectation than less selective ones. These effects were present for all 

LOC ROI mask sizes from 50-300 voxel. Thus, also the selectivity analysis provides 

evidence that neural responses are dampened by expectations in LOC. Results in 

V1 were inconclusive with no significant effect of voxel selectivity on expectation 

suppression (t(21) = 1.80, p = 0.086, Cohen’s dz = 0.38) and only weak anecdotal evidence 

for the absence of an effect in the corresponding Bayesian t-test (BF10 = 0.887).
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In another complementary analysis, we reasoned that if the reduced activity for 

expected items is associated with a reduction of noise (sharpening), it is expected to 

be associated with an increase in classification accuracy in a MVPA [18]. Conversely, 

a dampening of the representation is predicted to be associated with a decrease in 

classification accuracy for expected image pairs [79]. Generally, image identity could 

be classified well above chance (12.5%) in V1 (expected: 27.9%, t(21) = 10.89, p = 4.3e-10, 

Cohen’s dz = 2.32; unexpected: 30.2%, t(21) = 15.70, p = 4.5e-13, Cohen’s dz = 3.35), and LOC 

(expected: 18.5%, t(21) = 5.69, p = 1.2e-5, Cohen’s dz = 1.21; unexpected: 19.5%, t(21) = 6.76, 

p = 1.1e-6, Cohen’s dz = 1.44). While a trend towards better decoding performance for 

unexpected images was visible in both ROIs, in line with dampening of the sensory 

response, this difference was not statistically significant (V1: t(21) = 1.93, p = 0.067, 

Cohen’s dz = 0.41; LOC: t(21) = 1.16, p = 0.260, Cohen’s dz = 0.25). Bayesian t-tests of this 

difference also remained inconclusive in both ROIs (V1: BF10 = 1.073; LOC: BF10 = 0.403).

Expectation facilitates image categorization

In order to assess whether concurrent to the described neural effects also behavioral 

benefits of expectation are evident, data from the categorization task was analyzed. 

Results demonstrate that participants categorized expected trailing images faster (M 

= 524.4 ms, SEM = 3.8 ms) than unexpected items (M = 537.4 ms, SEM = 3.8; t(21) = 2.40, 

p = 0.026, Cohen’s dz = 0.51; Figure 2.4A). A similar, albeit not statistically significant 

trend (t(21) = 1.19, p = 0.247, Cohen’s dz = 0.25) was visible in terms of error rates (Figure 

2.4B). Analysis of the questionnaires showed that on average participants correctly 

identified 4.0 ± 2.3 (± SD) of the eight image pairs.

 

 
FIGURE 2.4  Facilitation of behavioral responses by expectations.

Behavioral data analysis from the categorization task indicates incidental learning of image 
transitions. Mean values ± within-subject standard error are shown. (A) Shows mean RT to 
expected and unexpected trailing images. RTs were significantly faster to expected trailing 
images compared to unexpected images. (B) Shows the corresponding mean error rates. * p < .05.
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Spatial extent of expectation suppression

In a post hoc analysis we investigated whether the expectation suppression effect in 

V1 and LOC was spatially unspecific, or constrained to regions activated by the object 

stimuli. The reasoning was that a spatially unspecific effect indicates that at least part 

of the observed expectation suppression may be due to arousal changes in response 

to unexpected compared to expected trailing images, while a constrained effect 

may point towards a spatially specific top-down modulation. To investigate this, 

the amount of expectation suppression was compared between voxels significantly 

activated by object stimuli and those that were not. The split into activated and 

not activated voxels was performed using data from the functional localizer, with 

activated voxels being defined as all voxels within anatomically defined V1 and LOC 

respectively, which exhibited a significant activation by object images (z > 1.96; i.e. p 

< 0.05, two-sided), while non-activated voxels were defined as voxels displaying no 

significant activation, nor deactivation (-1.96 < z < 1.96). ROI masks were constrained 

to gray matter voxels. In both ROIs, activated and non-activated voxels showed 

evidence of expectation suppression (V1, activated voxels: t(21) = 3.01, p = 0.007, 

Cohen’s dz = 0.64; V1, non-activated voxels: t(21) = 2.17, p = 0.041, Cohen’s dz = 0.46; LOC, 

activated voxels: t(21) = 4.11, p = 0.0005, Cohen’s dz = 0.88; LOC, non-activated voxels: t(21) 

= 2.51, p = 0.021, Cohen’s dz = 0.53). In LOC expectation suppression was significantly 

stronger in voxels that were activated by the stimuli than in non-activated voxels 

(t(21) = 2.20, p = 0.039, Cohen’s dz = 0.47). However, in V1 this difference was not 

statistically significant (t(21) = 1.09, p = 0.286, Cohen’s dz = 0.23). A Bayesian analysis of 

V1 data remained inconclusive, yielding only anecdotal evidence for the absence of a 

difference between activated and non-activated voxels (BF10 = 0.379).

Discussion

We set out to investigate the neural effects of perceptual expectation and 

demonstrated that, after incidental learning of transitional probabilities of object 

images, expectation suppression is evident throughout the human ventral visual 

stream. Importantly, the amount of expectation suppression scaled positively with 

image preference and voxel selectivity in LOC, suggesting that dampened sensory 

representations underlie expectation suppression in object-selective areas, in line 

with results from monkey IT [23,79]. 
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Dampening of sensory representation in object-selective cortex

The suppression of expected stimuli, evident throughout the ventral visual stream 

in the present study, extends and supports previous research showing expectation 

suppression in early visual areas [18,78,106] and monkey IT [23,26]. The observed suppression 

may constitute an efficient and adaptive processing strategy, which filters out 

predictable, irrelevant objects from the environment. Conversely, the stronger response 

to unexpected objects may serve to render unexpected stimuli more salient. This 

surprise response to unexpected stimuli may draw attention towards these stimuli, 

as also reasoned by Meyer and Olson [23]. Such capture of attention is adaptive since 

unexpected events may provide particularly relevant information. It is important to note 

that the utilized paradigm did not manipulate attention towards expected or unexpected 

stimuli in a top-down fashion. In fact, unexpected and expected stimuli were only 

distinguishable by the context in which they occurred. Therefore, if unexpected stimuli 

do indeed automatically capture attention [37,107], then any attentional modulation must 

temporally follow the expectation effect, and not vice versa.

Given the absence of a neutral condition, we cannot differentiate whether the 

observed expectation suppression effect constitutes a suppressed response for 

expected stimuli, or an enhanced response to unexpected ones, or both. While there 

is evidence for both, expectation suppression and surprise enhancement [26,108], the 

present data cannot speak to this issue, but only concerns the relative difference 

between expected and unexpected stimuli.

We showed that the amount of expectation suppression scales with image 

preference in object-selective LOC, as also demonstrated in monkey IT [23]. Scaling 

indicates that expectation suppression in object-selective areas does not merely 

signal an unspecific surprise response, but rather that sensory representations 

are dampened by expectations, since the neural population most responsive to the 

expected stimulus is also most suppressed. Accordingly, we also demonstrated that 

expectation suppression scales positively with voxel selectivity. This result further 

supports the dampening account of expectation, since selective voxels contain more 

highly responsive neurons, tuned towards the expected stimulus features, which 

are also most suppressed by dampening. While there are some scenarios in which 

neural sharpening could account for some of the results presented here in isolation, 

the joint set of observations can only be accounted for by a dampening process at 

the neural level. Thus, our results lend support to the notion that neural responses 

are dampened by expectations in object selective LOC. Functionally, a dampening 

of sensory representations is in line with an adaptive mechanism, which filters out 

behaviorally irrelevant, predictable objects from the environment. 
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If expectation suppression, and the underlying representational dampening in 

LOC, represents an adaptive neural strategy, one might expect behavioral benefits 

to correlate with the neural effects. Although we observed behavioral benefits for 

expected stimuli during the categorization task, the present study cannot answer 

whether expectation suppression is associated with behavioral benefits, since 

during the fMRI task, and central to the interpretation above, expectations were task 

irrelevant. Task relevant predictions, necessary in order to investigate this question, 

may in turn change the underlying neural dynamics. In fact, it has been suggested 

that, at least in early visual areas, attention can reverse the suppressive effect of 

expectation [32].

While we did observe expectation suppression in V1, we did not find conclusive 

evidence for, or against, dampening or sharpening. These results cannot be explained 

by the absence of image preference in V1 for the utilized stimuli, as the preference 

ranking itself was reliable. Since a stimulus unspecific suppression was evident in 

V1, it is possible that object specific expectations were resolved at a higher level in 

the cortical hierarchy and only the results of the prediction (expected or unexpected) 

was relayed to V1 as feedback. Alternatively, a dampening effect may exist in V1, albeit 

of a smaller magnitude than in LOC, yielding an effect below detection threshold for 

the present study. Suppression in V1 may also have arisen due to spatially unspecific 

effects across V1, such as arousal changes, after the resolution of expectations in 

higher cortical areas. This interpretation is supported by the fact that expectation 

suppression was not significantly larger in stimulus-driven than non-stimulus-

driven voxels.

Finally, the present results are at odds with a previous study that observed a 

sharpening of the sensory population response in V1 by expectation [18]. While we 

did not find evidence for a sharpening of responses in V1, we did observe dampening 

in LOC, in line with studies of monkey electrophysiology [23,79]. Thus, our data shows 

that the disagreement in previous studies, suggesting sharpening in human V1 [18] 

and dampening in monkey IT [23,79] are unlikely to be caused by differences between 

species or recording methods. We briefly discuss three factors that may account for 

the opposite results. First, Kok et al. [18] and the present study employed different 

stimuli (grating vs. object stimuli), tailored to investigate the population response 

in different areas of the visual hierarchy (V1 vs. LOC). Given that we did not find 

evidence for sharpening in V1, the opposite results cannot be explained by a general 

difference between the sensory areas, but rather an interaction between stimulus 

type and sensory area. Second, we induced expectations by prolonged exposure prior 

to scanning, while in Kok et al. [18] expectations were learnt and updated during the 

experiment. Interestingly, while expectation suppression has been shown in monkey 
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IT when expectations were induced by long-term exposure [23,26], this effect was 

not found when expectations were induced during the experiment [109,110]. Finally, 

there are differences between the studies in task demands. In the current study, we 

examined neural activity elicited by expected and unexpected non-target stimuli, 

i.e. stimuli that did not require a response by the observer. On the other hand, all 

stimuli in Kok et al. [18] were target stimuli, requiring a discrimination judgment 

by the observers. Given that attentional selection is known to sharpen stimulus 

representations [111], this difference in task setup could explain the opposite results. 

Prediction errors and predictive coding 

Within a hierarchical predictive coding framework, prior expectations about an 

upcoming stimulus act as top-down signals predicting the bottom-up input based 

on generative models of the agent [12]. These predictions are then compared to the 

actual bottom-up input resulting in a mismatch signal, the prediction error (PE). 

Expectation suppression, as evident in the present data, and previously observed by 

others (e.g. [18,43,112]), matches the properties of a PE signal. That is, the ensuing PE is 

smaller for expected compared to unexpected trailing images, since the mismatch 

between prediction and input is smaller, thus resulting in expectation suppression, 

as evident here throughout the ventral visual stream. Furthermore, a dampening 

of object representations in LOC can well be explained within predictive coding as 

a result of the stronger and prolonged resolution of prediction errors elicited by 

unexpected images. 

Alternatively, our results could partially be explained by changes in arousal, 

potentially reflecting globally enhanced responses following surprising stimuli. 

This explains why expectation suppression in V1 was spatially unspecific and some 

suppression was evident in non-stimulus driven voxels in LOC. However, such 

unspecific upregulation of activity cannot readily account for the stimulus- and 

spatially specific response modulations in LOC, while predictive coding explains 

these effects well.

No systematic modulation of expectation suppression by 
conditional probability

The present results do not provide evidence for a systematic modulation of 

expectation suppression by conditional probabilities. This is somewhat surprising 

given that a modulation has been demonstrated in monkey TE [27]. Furthermore, it is 

only by virtue of the difference in conditional probability that a trailing image can 

be considered expected or unexpected. Thus, by its nature expectation suppression 
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should be sensitivity to conditional probability. We believe that this null result may be 

due to a lack of sensitivity of the associated analysis. The complexity of the transition 

matrix and the relatively small difference in conditional probability between the 

conditions, as well as the split of the available data into the three conditions may have 

all led to a reduction in sensitivity. Thus, to further elucidate the nature of expectation 

suppression future research in humans is required, possibly utilizing simplified 

paradigms or extended exposure to the image transitions.

Conclusion

Taken together, our results demonstrate that expectation suppression is a wide-

spread neural mechanism of perceptual expectation in the ventral visual stream, 

which increases with image preference and voxel selectivity. Perceptual expectations 

thus lead to a dampening of sensory representations in object-selective cortex, 

possibly supporting our ability to filter out irrelevant, predictable objects.
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Abstract

Perception and behavior can be guided by predictions, which are often based on learned 

statistical regularities. Neural responses to expected stimuli are frequently found to 

be attenuated after statistical learning. However, whether this sensory attenuation 

following statistical learning occurs automatically or depends on attention remains 

unknown. In the present fMRI study, we exposed human volunteers to sequentially 

presented object stimuli, in which the first object predicted the identity of the second 

object. We observed a reliable attenuation of neural activity for expected compared to 

unexpected stimuli in the ventral visual stream. Crucially, this sensory attenuation 

was only apparent when stimuli were attended, and vanished when attention was 

directed away from the predictable objects. These results put important constraints 

on neurocomputational theories that cast perception as a process of probabilistic 

integration of prior knowledge and sensory information.
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Introduction

Previous experience constitutes a valuable source of information to guide perception 

and behavior. Extracting statistical regularities from past input in the environment 

to form expectations about the future has been shown to improve behavior in 

myriad ways [51,58,59]. Indeed, the acquisition of statistical regularities is thought 

to occur automatically [31] and affects behavior even in the absence of an intention 

to learn, or an awareness of, the regularities [50,75]. Given the significant behavioral 

and perceptual relevance of expectations, it is perhaps not surprising that the brain 

shows a remarkable sensitivity to statistical regularities. Many studies documented 

attenuated neural responses for expected compared to unexpected object stimuli 

in ventral visual regions subserving object recognition, both in terms of single unit 

spiking activity in monkeys [23,26] and in terms of non-invasively measured BOLD 

activity in humans ([24,25,113]; for a review see: [19]). This reduced response to expected 

stimuli has frequently been interpreted, within a predictive processing framework 

[11,12,114], as signifying a reduction of prediction errors elicited by the stimulus when 

sensory input matches prior expectations. However, it remains largely unknown 

whether this sensory attenuation process to predicted visual stimuli is automatic, as 

its relation to statistical learning may suggest, or only apparent when the predictable 

stimuli are attended.

Indeed, research on visual statistical learning in monkeys has typically not 

manipulated attention, but only required monkeys to passively fixate in order to 

obtain reward [23,26], thereby precluding conclusions pertaining to the dependence 

of these predictive processes on attention. Many studies in humans, providing 

evidence for suppressed responses to expected stimuli, did require participants to 

attend the predictable stimuli (e.g., [18,24,25,113]). On the other hand, den Ouden et al. [61] 

demonstrated attenuated responses to task-irrelevant expected stimuli, suggesting 

the possibility that the sensory consequences of statistical learning may not depend 

on attention. Similarly, Kok et al. [18] showed that the sensory attenuation for grating 

stimuli with an expected orientation was independent of whether the orientation 

feature was attended or not. Importantly however, in both these studies the expected 

or unexpected stimulus was the only stimulus presented on the screen, so even 

though the stimuli were not relevant, attention was not effectively disengaged by 

other stimuli. Without competition, it is likely that even a task-irrelevant stimulus 

will receive some attention.

Thus, at present it remains unclear whether statistical learning automatically results 

in altered neural responses to expected compared to unexpected visual stimuli, or 

whether this process hinges on the stimuli being attended. In order to answer this 
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question, we exposed participants to sequentially presented pairs of object images. 

The first image predicted the identity of the second image, thereby making an image 

expected depending on temporal context. We recorded responses to expected and 

unexpected object images using whole-brain fMRI while participants performed 

one of two tasks. Either participants categorized the predictable, second object 

image as (non-)electronic (rendering the object images attended), or they classified a 

concurrently shown character (letter or symbol), presented within the fixation dot, as 

(non-)letter (rendering the object images unattended).

In brief, our results demonstrate strong sensory attenuation for expected object 

images within the ventral visual stream. Crucially however, expectation suppression 

was only evident when objects were attended and vanished when participants 

attended the concurrently presented alphanumeric characters at fixation. This 

suggests that sensory attenuation induced by statistical learning is not the result of an 

automatic integration of prior knowledge with incoming information, but hinges on 

attention, thus constraining neurocomputational theories of perceptual inference. 

Results

We exposed participants to statistical regularities by presenting object image pairs 

in which the leading image predicted the identity of the trailing image. During a 

learning session, participants performed a detection task of unpredictable upside-

down images. On the next day, in the MRI scanner, participants were shown the same 

object image pairs, however unexpected trailing images were also presented; i.e., 

images which were predicted by a different leading image. Crucially, participants 

either classified the trailing object as (non-)electronic, thus actively attending the 

predictable object, or classified a concurrently presented, but unpredictable, trailing 

character as (non-)letter, thus not attending the predictable object.

Attention is a prerequisite for perceptual expectations

First, we investigated whether the sensory attenuation for expected object stimuli 

was equally present when participants attended the objects or not, focusing on our 

a priori defined ROIs (see Figure 3.1A): primary visual cortex (V1), object-selective 

lateral occipital complex (LOC), and temporal occipital fusiform cortex (TOFC). In 

all three regions, expectation suppression was robustly present when participants 

attended the objects (V1: t(33) = 3.573, p = 0.001, dz = 0.613; LOC: t(33) = 3.860, p = 5.0e-

4, dz = 0.662; TOFC: t(33) = 5.133, p = 1.2e-5, dz = 0.880), but absent when participants 

attended the characters at fixation; i.e., when the predictable objects were unattended 
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(V1: t(33) = -0.216, p = 0.830, dz = -0.037; LOC: t(33) = -0.831, p = 0.412, dz = -0.143; TOFC: t(33) 

= 0.072, p = 0.943, dz = 0.012). Indeed, Bayesian analyses showed moderate support 

for the null hypothesis (BF10 < 1/3) of no expectation suppression in all three regions 

during the character categorization task (V1: BF10 = 0.188; LOC: BF10 = 0.253; TOFC: BF10 

= 0.184). The robustness of this distinct pattern of expectation suppression for the 

two conditions was statistically confirmed by an interaction analysis (expectation by 

attention interaction, V1:, F(1,33) = 7.706, p = 0.009, η² = 0.189; LOC: F(1,33) = 12.580, p = 

0.001, η² = 0.276; TOFC: F(1,33) = 16.955, p = 2.4e-4, η² = 0.339). 

 

 
FIGURE 3.1  Expectation suppression within the ventral visual stream depends on attention.

(A) Displayed are parameter estimates +/- within-subject SE for responses to expected (blue) 
and unexpected (green) object stimuli during the objects attended task (attended) and objects 
unattended task (unattended). In all three ROIs, V1 (left), LOC (middle), and TOFC (right) BOLD 
responses were significantly suppressed in response to expected stimuli during the objects 
attended task. No difference was found between BOLD responses to expected and unexpected 
stimuli during the objects unattended task. The interaction effect between expectation and 
attention condition was significant in all three ROIs. (B) Expectation suppression in primary 
visual cortex is stimulus unspecific, and specific only in higher visual areas. Displayed is the 
average expectation suppression effect (BOLD responses, unexpected minus expected) split 
into stimulus-driven (light gray) and non-stimulus-driven (dark gray) gray matter voxels. 
Data are shown for the three ROIs, V1 (left bars), LOC (middle bars), and TOFC (right bars). 
Expectation suppression in LOC and TOFC was significantly larger for stimulus-driven than 
non-stimulus-driven voxels, while no such difference was evident in V1, indicating that 
expectation suppression in V1 was stimulus unspecific. Error bars indicate within-subject SE. 
Note, that the ROI masks in panel A and B differ, for details see: ROI definition and Stimulus 
specificity analysis in the Materials and Methods section. * p < 0.05, ** p < 0.01, *** p < 0.001.

 

Thus, in V1, LOC, and TOFC, there was a significant suppression of BOLD responses 

for expected compared to unexpected object stimuli exclusively during the object 

categorization task. No such modulation of BOLD responses by expectation was 

observed in the objects unattended condition in any of the three a priori ROIs, and 
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in fact, there was moderate evidence for the absence of such a modulation when 

objects were unattended. We repeated all ROI analyses within the same ROIs but with 

different ROI sizes in order to ensure that our results were not dependent on the a 

priori but arbitrarily defined ROI mask size. Results were highly similar (i.e., the same 

effects showing statistically significant results) to those mentioned above within all 

three ROIs (V1, LOC, TOFC) for all tested ROI sizes, ranging from 100 to 400 voxels (800 

mm3 - 3200 mm3) in steps of 100 voxels. Thus, our results do not depend on the exact 

ROI size but represent responses within the respective areas well.

We also examined how expectation modulated neural activity outside our predefined 

ROIs by performing a whole-brain analysis. Results of this whole brain analysis are 

illustrated in Figure 3.2A. The upper row in Figure 3.2A shows extensive clusters of 

expectation suppression throughout the ventral visual stream when objects were 

attended, but no difference when the objects were unattended (middle row), leading 

to a significant interaction (bottom row). These results complement our ROI-based 

analysis by showing that the observed expectation suppression effect is not unique to 

the a priori defined ROIs but evident throughout the ventral visual stream.

Outside the ventral visual stream, additional clusters of expectation suppression 

are evident in anterior insula and the frontal operculum, the precentral and 

inferior frontal gyrus, superior frontal gyrus and supplementary motor cortex, 

superior parietal lobule, as well as parts of the cerebellum. All significant clusters 

are summarized in a table in Supplementary File 3.1. Again, all these non-sensory 

clusters showed reduced activity for expected objects only when the object stimuli 

were attended and categorized. There was no significant modulation of activity by 

expectation anywhere in the whole brain analysis when the objects were unattended.
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FIGURE 3.2  Expectation suppression across cortex for attended object stimuli only. 

(A) Widespread expectation suppression across cortex in the objects attended condition. 
Displayed are parameter estimates for unexpected minus expected image pairs overlaid 
onto the MNI152 2mm template. Color indicates unthresholded parameter estimates: red-
yellow clusters represent expectation suppression. Opacity represents the z statistics of the 
contrasts. Black contours outline statistically significant clusters (GRF cluster corrected). 
Significant clusters included major parts of the ventral visual stream (early visual cortex, LOC, 
TOFC), anterior insula, and inferior frontal gyrus during the objects attended condition (upper 
row). No significant clusters were evident in the objects unattended condition (middle row). 
The interaction (attended > unattended; bottom row) showed significant clusters similar to 
those of the attended condition, albeit less extensive. (B) Expectation suppression across the 
ventral visual stream for attended objects, but with task-irrelevant predictions. Displayed 
are z statistics of the contrast unexpected minus expected of the conjunction: attended task-
relevant predictions ∪ task-irrelevant predictions; data of task-irrelevant predictions from: [113]. 
Exclusively the ventral visual stream clusters showed significant expectation suppression in 
this conjunction, while all non-sensory area clusters were no longer significant. Thus, only the 
ventral visual stream clusters displayed a sensitivity to conditional probabilities, irrespective 
of whether predictions were task-relevant or task-irrelevant, as long as the predictable stimuli 
were attended.
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Expectation suppression requires attention to the stimuli, but not 
their predictable relationship 

During the object categorization task, the ability to form expectations about the trailing 

object stimulus was helpful for the participants, and indeed expected object stimuli 

were categorized more quickly and accurately (see Figure 3.5A and Expectations facilitate 

object classification). This begs the question whether the expectation suppression effect 

that we observed throughout multiple brain areas during the object categorization task 

reflects differences in task engagement. Participants had an incentive to (implicitly 

or explicitly) use their knowledge of the predictable relationship between the leading 

and trailing image to prepare their object categorization response. In order to examine 

which brain regions exhibited expectation suppression irrespective of the relevance 

of the predictable relationship between stimuli, we performed a conjunction analysis 

that highlighted regions that showed significant expectation suppression both in 

the current study (during the object categorization task) and in a similar study that 

we published previously [113]. During this latter study, participants also attended the 

object stimuli, but were asked to press a button whenever an object appeared that was 

flipped upside-down. Upside-down images occurred rarely, and importantly, were not 

related to the (implicitly learned) statistical regularities. Figure 3.2B shows the whole-

brain results of this conjunction analysis. Significant, bilateral clusters of expectation 

suppression were evident throughout most of the ventral visual stream. However, 

none of the non-sensory clusters showed significant expectation suppression during 

both experiments. Thus, only in the ventral visual stream we found strong and 

robust evidence for expectation suppression, regardless of whether the predictable 

relationship was task-relevant or task-irrelevant, as long as the predictable object pairs 

were attended.

Stimulus specificity of the neural modulation by expectation

Next, we investigated the stimulus specificity of expectation suppression. Stimulus 

specificity concerns the question whether only stimulus-driven voxels or also 

voxels that were not (strongly) driven by the object stimuli displayed expectation 

suppression. The rationale was that an unspecific suppression effect (i.e., expectation 

suppression that is also evident in not stimulus-driven voxels) may result from global 

non-sensory effects, such as changes in general arousal or global surprise signals. 

On the other hand, stimulus specific suppression effects, being limited to stimulus-

driven voxels, are rather suggestive of a more specific suppression mechanism that 

selectively operates on the neural populations that represent the expected stimulus; 

e.g., the dampening of stimulus-specific prediction errors as a result of a match 

between prediction and input.
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All three ROIs were split into two populations of gray matter voxels, according to 

their stimulus responsiveness (stimulus-driven: responding to the object images; 

not stimulus-driven: not significantly responding to the object images), using 

independent data from the localizer run. There were strong differences between the 

ROIs in terms of the stimulus specificity of expectation suppression (Figure 3.1B; ROI 

x drive interaction: F(1.245,41.080) = 7.651, p = 0.005, η² = 0.188). Whereas there was clear 

evidence for a larger expectation suppression effect in stimulus-driven than not 

stimulus-driven voxels in higher visual areas (LOC: t(33) = 3.991, p = 3.4e-4, dz = 0.684; 

TOFC: t(33) = 4.654, p = 5.1e-5, dz = 0.798), suppression was not significantly different 

between stimulus-driven and not stimulus-driven voxels in V1 (t(33) = -1.057, p = 0.298, 

dz = -0.181). Indeed, a Bayesian analysis indicated moderate support for the absence 

of a difference between stimulus-driven and not stimulus-driven voxels in V1 (BF10 = 

0.307). Of note, all sub-populations in all three ROIs showed significant expectation 

suppression (all p < 0.05), suggesting that there is a general suppression of activity for 

expected stimuli in visual cortex, irrespective of whether the visual cortical area is 

driven by the stimuli. However, in later visual cortical areas (LOC and TOFC) there was 

significantly more expectation suppression in neuronal subpopulations that were 

driven by the stimulus, implying a more selective suppression mechanism in these 

areas.

Surprising stimuli elicit a larger pupil dilation 

In view of the suggestion that a global, stimulus unspecific response modulation may 

partially account for expectation suppression, we performed an exploratory analysis 

to examine whether surprising stimuli were associated with a stronger pupil dilation 

in our task. Pupil responses have been with linked with changes in arousal [115,116], 

which in turn may account for the stimulus unspecific suppression component. 

Moreover, pupil dilation scales with surprise [117–119]. Thus, this account would predict 

enhanced pupil dilation to unexpected compared to expected stimuli when objects 

were attended. 

There was indeed a larger pupil diameter for unexpected compared to expected 

trailing images during the objects attended task (Figure 3.3, left). This difference 

emerged gradually starting ~600 ms after the onset of the trailing object image, and 

was significant between 1.5-2.8 seconds, as assessed with a cluster permutation test 

(pcluster = 0.017). When objects were unattended, no significant difference in pupil 

diameter was found between the expectation conditions, and in fact, no timepoint 

surpassed the cluster formation threshold (i.e., all timepoints p > 0.05 uncorrected; 

Figure 3.3, right). However, the expectation induced difference in pupil diameter was 

not reliably different between attended and unattended stimuli (pcluster = 0.393). Thus, 
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the data showed that the pupil was significantly more dilated for unexpected than 

expected objects when the images were attended, mirroring the results of the neural 

data – albeit, without a reliable difference between attended and unattended stimuli. 

This tentatively suggests that the enhanced BOLD responses to unexpected stimuli 

might be partially accounted for by a global mechanism, such as increased arousal in 

response to surprising stimuli.

 

FIGURE 3.3  Larger pupil dilations in response to unexpected compared to expected stimuli 
during the objects attended task. 

Displayed are pupil diameter traces over time, relative to trailing image onset. Pupil diameter 
data for expected (blue) and unexpected (green) image pairs are shown for the objects 
attended task (left) and objects unattended task (right). The black line on the abscissa denotes 
statistically significant differences in pupil dilations between expected and unexpected 
images (cluster permutation test, p < 0.05). In the objects attended condition significantly 
larger pupil dilations in response to unexpected images are evident between 1.52 to 2.88 
seconds after trailing image onset (left). No significant difference is found in the objects 
unattended condition (right), nor in the interaction between conditions. The first vertical 
dashed line indicates leading image onset, the second vertical line trailing image onset. 
Shaded areas denote within-subject SE. Timepoints from -1.0 to -0.5 seconds served as 
baseline period.

 
Expectation suppression and pupil dilations to surprising stimuli 
are associated

We explored whether expectation suppression and pupil dilation differences 

between unexpected and expected objects were associated. In other words, we sought 

for evidence of an association between the effect of expectations on pupil dilation 

and the expectation induced neural response attenuation. For this analysis we rank 

correlated expectation suppression magnitudes with pupil dilation differences for 

each participant. Results, displayed in Figure 3.4A, suggest that, when objects were 
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attended, expectation suppression in V1 was more pronounced for trailing images 

that also resulted in larger pupil dilation differences (t(31) = 2.464, p = 0.019, dz = 0.436). 

This association was not reliable in LOC (t(31) = 1.413, p = 0.167, dz = 0.250; BF10 = 0.466) 

or TOFC (t(31) = 1.401, p = 0.171, dz = 0.248; BF10 = 0.458). There was no correlation of pupil 

dilation differences and expectation suppression when stimuli were unattended in 

any of the ROIs (V1: t(31) = -0.159, p = 0.875, dz = -0.028; BF10 = 0.191; LOC: t(31) = -0.125, p 

= 0.901, dz = -0.022; BF10 = 0.190; TOFC: t(31) = 0.177, p = 0.861, dz = 0.031; BF10 = 0.192). 

There was no significant overall difference in the correlation strength between 

attended and unattended stimuli (F(1,31) = 1.892, p = 0.179, η² = 0.058), nor between ROIs 

(F(1.558,48.293) = 0.134, p = 0.823, η² = 0.004), nor their interaction (F(2,62) = 0.482, p = 0.603, 

η² = 0.015). Thus, when stimuli were attended there was evidence for an association 

of pupil dilation and expectation suppression in V1.

 

FIGURE 3.4  Expectation suppression is associated with pupil dilation differences and 
behavioral benefits of expectations.

(A) Correlation of expectation suppression magnitude and pupil dilation differences due to 
expectation. When predictable objects are attended, trailing images that induce larger pupil 
dilation differences are also showing larger expectation suppression magnitudes in V1. 
No such association is evident when objects are unattended. (B) Correlation of expectation 
suppression magnitude and RT benefits due to expectation. When predictable objects are 
attended, larger RT benefits are associated with larger expectation suppression effects in V1 
and TOFC. This association is absent when objects are unattended. Error bars indicate within-
subject SEM. * p < 0.05.

 
Expectations facilitate object classification

In order to assess whether, concurrent with the neural effects of expectations, 

behavioral benefits of expectations were evident, we analyzed behavioral responses 
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the objects attended (classify electronic items) and objects unattended task (classify 

characters at fixation) showed very similar response accuracies (attended: 94.3% ± 

5.4% vs. unattended: 94.0% ± 6.6%, mean ± SD) and only minor differences in RTs 

(attended: 574 ± 150 ms vs. unattended: 602 ± 131 ms, mean ± SD). This supports the 

notion that both tasks were of approximately equal difficulty.

 

FIGURE 3.5  Behavioral results demonstrate statistical learning.

(A) Behavioral benefits of expectations demonstrate statistical learning. Displayed are mean 
accuracy (left) and mean reaction time (right) +/- within-subject SE. Responses to expected 
stimuli are significantly more accurate and faster, an effect exclusively observed during the 
objects attended condition. Thus, object identity expectations benefit behavioral performance 
during object classification and do not impact letter classification. (B) Pairs of both the objects 
attended image set and the objects unattended image set were classified significantly above 
chance, indicating a learning of the pairs for both conditions. Displayed are mean accuracy 
(left) and mean reaction time (right) during the post-scanning pair recognition task, +/- 
within-subject SE. The dashed line indicates chance level. During the pair recognition task, 
no differences in either classification accuracy (left) or response speed (right) were observed 
between pairs previously belonging to the objects attended task compared to the objects 
unattended task. * p < 0.05, *** p < 0.001.

During the object categorization task, participants could benefit from the 

foreknowledge of the identity of the trailing object image, as they were asked to 

categorize the trailing image. Such a benefit would however not be expected during 

the character categorization task, as the participants could fully ignore the object 

stimuli during this task. This is precisely what we observed, both in terms of accuracy 

and RTs (Figure 3.5A). During the object categorization task, participants were more 

accurate (W = 457, p = 3.2e-4, rB = 0.536) and faster (W = 9, p = 3.8e-9, rB = -0.970) for 

expected compared to unexpected trailing object stimuli. Conversely, during the 

character categorization task, no such benefit was observed in terms of accuracy (t(33) 

= 1.600, p = 0.119, dz = 0.274; BF10 = 0.582) or RT (W = 252, p = 0.447, rB = -0.153; BF10 = 

0.273). The robustness of this distinct pattern of behavioral advantage for expected 
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stimuli for the two conditions was statistically confirmed by an interaction analysis 

(accuracy: F(1,33) = 5.203, p = 0.029, η² = 0.136; RT: F(1,33) = 37.543, p = 6.6e-7, η² = 0.532). 

Neural and behavioral effects of expectations are associated

In order to explore whether the observed expectation suppression is associated 

with the behavioral benefits due to expectations, we correlated the magnitude of 

expectation suppression and the expectation induced RT benefits. Results, illustrated 

in Figure 3.4B, show that when the predictable objects were attended, behaviorally 

observed expectation RT benefits and neurally observed expectation suppression 

were associated in both, V1 (t(33) = 2.442, p = 0.020, dz = 0.419) and TOFC (t(33) = 2.236, 

p = 0.032, dz = 0.384), but no reliable correlation was found in LOC (t(33) = 1.384, p = 

0.176, dz = 0.237, BF10 = 0.439). There was no association in any ROI when objects were 

unattended (V1: t(33) = -0.418, p = 0.679, dz = -0.072, BF10 = 0.199; LOC: t(33) = -0.374, p = 

0.711, dz = -0.064, BF10 = 0.196; TOFC: t(33) = 0.179, p = 0.859, dz = 0.031, BF10 = 0.186). On 

average correlations were not reliably larger when objects were attended than when 

they were unattended (attention: F(1,33) = 2.920, p = 0.097, η² = 0.081). The pattern of 

results was similar in all ROIs (F(1.636,53.988) = 0.615, p = 0.513, η² = 0.018; interaction: 

F(1.461,48.203) = 0.381, p = 0.619, η² = 0.011). Thus, there is some evidence that when the 

objects were attended, participants showed larger benefits (faster RTs) for expected 

trailing images for which they also showed larger magnitudes of expectation 

suppression in V1 and TOFC. These results suggest that the neural and behavioral 

effects of expectations are associated.

No differences in association strength between attended and 
unattended object pairs

An alternative explanation for the absence of sensory attenuation for expected object 

stimuli during the character categorization task is that statistical regularities for the 

objects that are presented during this condition have simply not been learned. This 

explanation may be unlikely, because the vast majority of exposure to the expected 

pairs takes places in the learning session, during which the same task (upside-

down image detection) was used for all image pairs. However, it is nonetheless 

important to ensure that statistical regularities were learned for the image pair sets 

of the object and the character categorization task. To empirically address this, we 

tested whether participants had explicit knowledge of the statistical regularities 

for all object pairs. During this post-scanning pair recognition task, participants 

were asked to indicate which one of two trailing images was more likely given the 

leading image. Participants indicated the correct trailing image with above chance 

accuracy for both, the set of object pairs that was previously attended (Figure 3.5B; 
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performance = 62.1% ± 1.8%, mean ± SE; t(33) = 6.803, p = 4.6e-8, dz = 1.167) and the set 

that was previously unattended (performance = 58.7% ± 2.2%; t(33) = 3.905, p = 2.2e-4, 

dz = 0.670). There was no statistically significant difference in accuracy on the pair 

recognition task between these sets of objects (W = 365, p = 0.256, rB = 0.227; BF10 = 

0.737). Reaction times were also similar for both sets of objects (objects previously 

attended: RT = 458.8 ± 25.4 ms; objects previously unattended: RT = 466.5 ± 25.9 ms; 

t(33) = -1.208, p = 0.236, dz = -0.207; BF10 = 0.358). Thus, the image pairs belonging to both 

task conditions (objects attended and unattended tasks) were reliably learned, most 

likely during the extensive behavioral training session, and there was no evidence for 

a significant difference in the learning of associations for the two sets of object pairs. 

This strongly suggests that the differences in sensory attenuation between the two 

attention conditions are unlikely to be explained by differences in the strength of the 

association between the object pairs.

Visual processing continues in the absence of attention

Finally, one may wonder whether the lack of expectation suppression when objects 

were unattended is due to the fact that object stimuli simply did not elicit strong 

activity in the ventral visual stream, as they were not in the focus of attention. 

Although all three ROIs showed reliable above-baseline activity also when objects 

were unattended (Figure 3.1A), and activity in LOC and TOFC was of similar amplitude 

during both conditions, the overall activity level may partly represent stimulus-

unrelated activity. Therefore, in an explorative analysis, we assessed the strength of 

stimulus-specific activity in our three ROIs, by means of a decoding analysis of the 

trailing images. In brief, a multi-class decoder was trained to differentiate between 

the six trailing images per attention condition. The classifier was trained on data 

obtained in an independent localizer run, during which participants performed 

a separate task (detection of dimming of fixation dot). Performance of this decoder 

was tested on the mean parameter estimates per trailing image for each of the two 

attention conditions of the main MRI task data. Because each task was comprised of 

six trailing images, chance performance was 16.7%. One-sample t-tests or Wilcoxon 

signed rank test (as applicable) showed that in each of the three ROIs (V1, LOC, TOFC) 

and tasks (objects attended, objects unattended) object identity could be decoded 

above chance (V1 attended: 81.1%; W = 595, p = 3.3e-7, rB = 1; V1 unattended: 84.8%; 

W = 595, p = 3.2e-7, rB = 1; LOC attended: 37.3%; t(33) = 6.303, p = 4.0e-7, dz = 1.08; LOC 

unattended: 38.0%; W = 583, p = 9.7e-7, rB = 0.96; TOFC unattended: 25.0%; W = 476, p = 

0.002, rB = 0.60), except in TOFC in the attended condition (TOFC attended: 19.6%; W = 

383, p = 0.143, rB = 0.287; BF10 = 0.388). 
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Moreover, decoding accuracy was not different between the objects attended and 

unattended conditions in any of the ROIs (V1: t(33) = -1.197, p = 0.240, dz = -0.205, 

BF10 = 0.354; LOC: t(33) = -0.214, p = 0.832, dz = -0.037, BF10 = 0.188; TOFC: t(33) = -1.726, 

p = 0.094, dz = -0.296, BF10 = 0.697). This suggests that the object stimuli evoked a 

reliable stimulus-specific activity pattern in all three sensory regions, which was 

not significantly different in strength between the two tasks (object categorization 

and character categorization). Note, the participants’ task during the localizer run, 

which we used to train the classifier, was to detect a dimming of the fixation dot. As 

such, object stimuli were unattended during the localizer run, which may render the 

training data more similar in terms of attention allocation to the objects unattended 

task than the objects attended task. This may explain why decoding accuracy 

is similar, or even higher, for unattended compared to attended objects. More 

importantly, overall visual processing of the object stimuli was clearly present even 

when the objects stimuli were not attended, as the identity of the objects could be 

reliably decoded from neural activity patterns throughout the ventral visual stream 

when objects were unattended.

Discussion

In the present study, we set out to investigate how sensory attenuation following 

visual statistical learning is modulated by attention. In line with previous studies 

[18,25,106,113,120] we found a significant and wide-spread attenuation of neural responses 

to expected compared to unexpected stimuli. Crucially, we showed that attending 

to the predictable stimuli is a prerequisite for this expectation suppression effect 

to arise. While unattended objects led to reliable and stimulus-specific increases 

in neural activity, and object pairs were equally learned for these stimuli, there was 

no differential activity depending on whether the trailing object was expected or 

unexpected. Additionally, we found that higher visual areas exhibited stimulus 

specific expectation suppression, whereas early visual cortex showed a global, 

stimulus unspecific suppression, possibly arising from a general increase in arousal 

in response to surprising stimuli.

Attention is a prerequisite for expectation suppression

Our results show that a core neural signature of perceptual expectations, expectation 

suppression [18,25,106,113], is only evident when attention is directed to the predictable 

object stimuli. Specifically, when participants engaged in an object categorization 

task, we found a wide-spread reduction of neural activity for expected compared to 

unexpected stimuli throughout the ventral visual stream (V1, LOC, TOFC), as well 

as several non-sensory areas (anterior insula, inferior frontal gyrus, precentral 
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gyrus, and superior parietal lobule). Strikingly, no modulation of neural activity by 

expectation was found when attention was drawn away from the object stimuli. 

Interestingly, by directly comparing our present data with a previous dataset, in 

which we used a similar design (reported in [113]), we established that expectation 

suppression is present throughout the ventral visual stream irrespective of whether 

predictions are task-irrelevant, as long as the object stimuli are attended. In contrast, 

the larger activity for surprising stimuli in non-sensory areas (insular, frontal and 

parietal cortex) was only observed in the context of task-relevant expectations. 

This suggests that neural activity in the ventral visual stream is modulated by 

conditional probabilities, as long as the stimuli are attended, while the modulations 

in non-sensory regions are probably reflecting differences in task demands, given 

that unexpected stimuli were more difficult to categorize (reflected by a cost in 

speed and accuracy). During the object classification task, unexpected objects may 

require response inhibition, reevaluation of the category, and thus a new response 

decision. Given that the anterior insula has been associated with task control, action 

evaluation [121], as well as general attentional processes [122], and inferior frontal gyrus 

with response inhibition [123,124], the interpretation that the expectation modulation 

in non-sensory clusters may reflect task related aspects, but not conditional 

probabilities per se, appears well-supported by previous research.

Finally, our results also demonstrate that larger expectation suppression effects 

in V1 and TOFC are associated with increased reaction time benefits afforded 

by expectations when people are judging the predictable objects. This suggests 

that the observed expectation suppression effect may not merely constitute an 

epiphenomenon of more resource efficient neural processing. Instead, given the 

present data, it is plausible that the behavioral advantage of predicting stimuli may 

partially be rooted in improved and more effective sensory processing already at 

the early stages of visual processing. Predictions may thus help in converging more 

rapidly on an interpretation of the current sensory input, thereby contributing to 

faster reactions to expected than unexpected stimuli.

No perceptual predictions without attention

Our results corroborate and extend earlier work by Larsson and Smith [62], who 

observed that stimulus expectation only affected repetition suppression when the 

stimuli were attended. However, they appear at odds with several previous studies 

that have reported expectation suppression in the visual system for stimuli that were 

not task-relevant and thus appeared unattended [18,32,61]. However, in all these studies, 

while the predictable stimuli were task-irrelevant, attention was not effectively 
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drawn away by a competing stimulus that required attention. While our attention 

manipulation is also based on task-relevance, we do engage attention elsewhere 

using a competing task. This is a crucial difference between the present and previous 

studies, because it is likely that any supraliminal stimulus, in the absence of 

competition, will be attended to some degree, even if it is not task-relevant, especially 

if the stimulus is surprising [125]. Indeed, synthesizing earlier and current findings, we 

can conclude that expectation suppression in the visual system occurs irrespective 

of exact task goals and relevance of the predictable objects and their predictable 

relationship, but it is abolished by drawing attention away from the stimuli. This 

suggests that the integration of prior knowledge and sensory input is gated by 

attention – i.e., prior knowledge only exerts an influence on stimuli that are in the 

current focus of attention, instead of automatically and pre-attentively modulating 

sensory input as an obligatory component of perceptual processing.

It is however possible that other, more ‘stubborn’ prior expectations [126] that are 

derived over longer (ontogenetic or phylogenetic) time scales may persist even 

when attention is drawn away, such as perceptual fill-in during the Kanizsa illusion 

[127]. Therefore, it is crucial to discriminate between different types of predictions, 

as expectations of different sources may rely on different neural mechanisms and 

therefore have distinct properties. Similarly, for simple stimuli, such as oriented 

gratings [18,32] or simple sequences [128], the resolution of expectations may depend 

less on recurrent processing throughout the visual hierarchy than for complex 

objects. Thus, it is conceivable that the automaticity of predictive processing partially 

depends on the complexity of the predictable stimuli and their association, with 

increasing complexity requiring increasing processing across the hierarchy, and in 

turn a focus of attention on the predictable stimuli. 

Specific vs. unspecific surprise responses

In LOC and TOFC expectation suppression was largest in neural populations that 

were driven by the stimuli. Surprisingly, this was not the case in V1, where the 

suppression was uniformly present in the population that was driven by the stimuli 

and the population that was not. This replicates the results of our previous study [113] 

and suggests that the expectation suppression we observe in V1 is not the result of 

a stimulus-specific reduction in prediction error responses of neurons processing 

the stimulus. Rather, they suggest that the observed expectation suppression effect 

in V1 may be accounted for by a more general response modulation. Widespread 

nonperceptual modulations of visual cortical activity have been documented in 

response to unexpected events [129,130] and have been suggested to be linked to the 

cholinergic or noradrenergic system [131,132]. Interestingly, both the cholinergic and 
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noradrenergic systems have also been associated with fluctuations in pupil dilation 

[133]. In line with this, we found a significantly enhanced pupil dilation in response to 

unexpected stimuli when the objects were attended. This suggests two possible global 

mechanisms which may partially account for the observed unspecific expectation 

suppression effect. Given that both pupil dilation [115,116] and the noradrenergic system 

[134] are associated with arousal changes, it is possible that expectation suppression 

is partially accounted for by an increased arousal in response to surprising stimuli. 

A related explanation is that enhanced pupil dilation to surprising stimuli [117–119] 

results in enhanced retinal illumination, which in turn leads to stronger responses in 

early visual areas [135], which could potentially also contribute to stimulus unspecific 

expectation suppression in V1. These interpretations are further supported by the 

fact that expectation suppression and pupil dilation differences between unexpected 

and expected attended stimuli were associated, with trailing images that elicit larger 

pupil dilation differences also showing more pronounced expectation suppression 

in V1.

It is unlikely however that these explanations can fully account for the observed 

expectation suppression effect across the visual hierarchy, given the stimulus-

specificity of suppression in LOC and TOFC. Also, it is important to bear in mind that 

earlier studies, using different stimuli and paradigms, did observe stimulus-specific 

expectation effects in V1 [18,136]. Combined, the evidence suggests that the resolution 

of prediction errors crucially depends on the visual areas that are specifically coding 

the feature that is diagnostic of an expectation confirmation or violation, while areas 

below this level may only witness an unspecific, global modulation in their response, 

signifying the binary expectation confirmation or violation. 

Attention and prediction errors

Within the predictive coding framework, it has been suggested that attention 

modulates the gain of prediction error units [16]. On first glance, our results may 

not appear compatible with the suggestion that attention modulates the gain 

of prediction errors, because we observe a stimulus specific bottom-up signal 

(prediction error) when stimuli are unattended, but no difference in the size of this 

prediction error between expected and unexpected stimuli. However, it is conceivable 

that the gain modulation of activity in prediction error units only occurs after the 

initial feedforward activity sweep, once the object predictions are strongly activated 

and start exerting an effect on the resolution of the prediction error. In particular, 

the response to unexpected attended stimuli may be upregulated by attention, while 

prediction errors for expected attended stimuli are rapidly resolved, thus resulting 

in the difference in activity for attended objects. On the other hand, when attention 
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is drawn away from the object stimuli, a reduced gain on prediction error units 

results in the observed attenuation of overall BOLD responses, and an absence of a 

reliable difference between expected and unexpected stimuli. A closely related, but 

conceptually distinct, interpretation is that attention constitutes a (modulation 

of the) prior itself [114,137]. On this account, attention boosts relevant predictions, 

as during the object classification task, thus leading to wide-spread expectation 

suppression, due to larger prediction errors for unexpected compared to expected 

stimuli. However, when attention is disengaged from the object stimuli, object 

predictions are not generated, and thus do not exert an effect on sensory processing. 

Interpretational limitations

One may wonder whether the character categorization task at fixation may have 

drawn attention away from the objects so forcefully that the object stimuli were 

no longer processed by sensory cortex. It is important to note here that, although 

attention was engaged at fixation by the character categorization task, this task was of 

trivial difficulty. Thus, it seems unlikely that attentional resources were exhaustively 

engaged by the task, preventing any processing of the surrounding object 

stimuli, thereby causing the absence of predictive processing. Indeed, behavioral 

performance was at ceiling during both tasks. Furthermore, even when objects were 

unattended reliable visual processing took place, as evident by strong responses and 

object-specific neural patterns in the visual ventral stream. This suggests that in-

depth visual processing of object stimuli did occur in the absence of attention, but 

predictive processes in particular ceased. 

Another alternative explanation of the present results could be that predictive 

relationships were not learned for the set of objects that were used during the character 

categorization task, thereby accounting for the absence of a prediction effect. The 

pair recognition task at the end of the experiment however showed that associations 

were learned for both image pair sets. Thus, a lack of visual processing or absence of 

learning cannot account for the observed results. Also, it is worth noting that initially 

the used probabilistic associations (P(expected|cue) = 0.5) may appear less strong 

than in some previous studies, e.g.: Egner et al. [24], Kok et al. [18], and Summerfield 

et al. [120] used P(expected|cue) = 0.75. However, the likelihood ratio of expected / 

unexpected stimuli (0.5 / 0.1 = 5) used here is actually larger (i.e., each unexpected 

image is more surprising) than in the cited studies (0.75 / 0.25 = 3). Moreover, similar 

probabilistic associations have been successfully employed in studies investigating 

neural effects of statistical learning in both non-human primates [23] and humans 

[113]. In short, the utilized conditional probabilities are comparable to previous 

studies investigating statistical learning. Finally, it is worth emphasizing that neither 
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adaptation nor familiarity effects can account for the observed results, because all 

trailing objects served both as expected and unexpected images, depending only on 

temporal context (i.e., the leading image). 

Conclusion

In sum, our results suggest that visual statistical learning results in attenuated 

sensory processing for predicted input, but only when this input is attentively 

processed. Thus, attention seems to gate the integration of prior knowledge and 

sensory input. This places important constraints on neurocomputational theories 

that cast perceptual inference as a process of automatic integration of prior and 

sensory information.

Materials and Methods

Preregistration and Data Availability 

The present study was preregistered at Open Science Framework (OSF) before any 

data were acquired. The preregistration document is available at DOI: 10.17605/

OSF.IO/36TE7. All procedures and criteria outlined in the preregistration document 

were followed, unless explicitly specified in the Method section below. In this 

manuscript, only research question 1 of the preregistration document is addressed. 

All data analyzed in the present paper are available here: http://hdl.handle.net/11633/

aacg3rkw

Participants and Data Exclusion

Our target sample size was n = 34. This sample size was chosen to ensure 80% power 

for detecting at least a medium effect size (Cohen’s d ≥ 0.5) with a two-sided paired 

t-test at an alpha level of 0.05. In total, 38 healthy, right-handed participants were 

recruited from the Radboud University research participation system. The study 

followed institutional guidelines of the local ethics committee (CMO region Arnhem-

Nijmegen, The Netherlands). We excluded four participants, following our exclusion 

criteria (see preregistration document and Data Exclusion) resulting in the desired 

sample size of n = 34 participants (25 female, age 24.9 ± 4.8 years, mean ± SD) for data 

analysis. Of these four exclusions, three exhibited excessive motion during scanning, 

and one was caused by the participant falling asleep, thus resulting in an incomplete 

data set.
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Data Exclusion

The following preregistered criteria were utilized for the rejection of data. If any of the 

following criteria applied, data from that participant were excluded from all analyses. 

(1) Subpar fixation behavior during scanning, indicative by a total duration of closed 

eyes exceeding 3 SD above the group mean – only trials with stimuli were considered 

in this analysis; i.e., null events and instruction or performance screens were not 

included. (2) Excessive relative motion larger than ½ voxel size (i.e., 1mm) during 

MRI scanning, as indexed by the total number of these motion events exceeding 2 SD 

above the group mean. (3) Task performance during MRI scanning indicating frequent 

attentional lapses, as indicated by a mean error rate 3 SD above the group mean. 

A fourth rejection criterion, outlined in the preregistration document, based on 

chance level performance during the post-scan pair recognition task (see: Pair 

recognition task and 2AFC task in the preregistration document), was not enforced. 

This decision was based on feedback by participants, indicating that the short ITI 

during this task made it very challenging, even for participants who reported to have 

learned most of the associations. Thus, the preregistered pair recognition task based 

exclusion criterion would not fulfill the desired function of reliably indicating which 

participants did not explicitly learn the associations, as participants struggled with 

the task due to its fast pace. Indeed, the enforcement of the criterion would have 

resulted in the rejection of an additional nine participants (~26% of participants) 

from data analysis, which was deemed too stringent.

Stimuli and experimental paradigm

Experimental paradigm

The experiment consisted of two sessions on two consecutive days. On each day the 

same stimuli were used for each participant, but different tasks were employed.

Learning session – day one. On each trial participants were exposed to two images 

of objects in quick succession (see Figure 3.6A for a single trial). Each stimulus was 

presented for 500 ms without an interstimulus interval and an intertrial interval 

between 1000-2000 ms. Each participant saw 24 different object images, 12 of which 

only occurred as leading images (i.e., as the first image on a trial), while the remaining 

12 occurred only as trailing images (i.e., as the second image on a trial). Importantly, 

during the learning session the leading image was perfectly predictive of the identity 

of the trailing image [P(trailing|leading) = 1]. In other words, there were 12 image 

pairs during learning. While participants were made aware of the existence of such 
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regularities, the regularities were not task-relevant. On 20% of trials, one of the two 

object images was presented upside-down – either the leading or the trailing image 

could be flipped upside-down. Crucially, whether an image was upside-down could 

not be predicted and was completely randomized. Participants were instructed to 

press a button as soon as an upside-down image occurred. Both speed and accuracy 

were emphasized. On trials without an upside-down image, no response was required. 

Throughout the entire trial, a fixation bull’s-eye (outer circle 0.7° visual angle) was 

superimposed at the center of the screen. Within the inner circle of the fixation bull’s-

eye (0.6° visual angle) alphanumeric characters (letters or symbols) were presented 

(~0.4° visual angle). The characters were presented at the same time and for the 

same duration as the object stimuli – i.e., two characters per trial, each for 500 ms. 

As with the object images, there were 12 leading characters and 12 trailing characters. 

However, unlike the objects, the identity of the characters, including whether a letter 

or symbol occurred, was randomized and thus unpredictable. Participants were 

instructed that they could ignore these characters, but to maintain fixation on the 

fixation bulls-eye. In total each participant performed 960 trials during the learning 

session split into four runs, with a brief break in between runs. Thus, each of the 

image pairs occurred 80 times during the learning session. The learning session took 

approximately 60 minutes. 

 

FIGURE 3.6  Experimental paradigm. 

(A) A single trial is displayed, starting with a 500 ms presentation of the leading object and the 
leading character superimposed at fixation. Next, without ISI, the trailing object and trailing 
character are shown for 500 ms. Each trial ends with a 4000-6000 ms ITI (MRI session; 1000-
2000 ms ITI learning session), showing only a fixation dot. (B) Statistical regularities depicted 
as image transition matrix with object pairs and trial numbers during MRI scanning. L1 to L12 
represent leading objects, while T1 to T12 represent the trailing objects. Leading and trailing 
objects were randomly selected per participant from a larger pool of images - i.e., leading 
images of one participant may occur as trailing objects of another participant, in a different 
task, or not at all. Blue cells denote expected object pairs of the objects attended (object 
categorization) task, while green indicates unexpected object pairs of the objects attended 
task. Red denotes expected objects of the objects unattended (character categorization) task, 
and orange indicates unexpected objects of the objects unattended task. Each participant 
was also assigned 12 leading and 12 trailing characters (6 letters, 6 symbols each). Unlike the 
object images, there was no association between leading and trailing characters – i.e., the 
identity of the leading and trailing character was unpredictable. White numbers represent 
the total number of trials of that cell during MRI scanning. In total 120 trials of each of the 
four conditions were shown during MRI scanning per participant. In the behavioral learning 
session, participants performed an orthogonal oddball detection task, during which only 
expected pairs were shown (i.e., only the diagonal of the matrix), for a total of 80 trials per 
expected pair (960 trials total). 
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fMRI session – day two. Day two of the experiment took place one day after the 

learning session. First, participants performed an additional 240 trials of the same 

upside-down task as during the learning session in order to refresh the learned 

associations. Then participants performed two new tasks in the MRI scanner. During 

MRI scanning, trials were similar to the learning session, using the same stimulus 

presentation durations, except for longer intertrial intervals (4000-6000 ms, 

randomly sampled from a uniform distribution). Another change to the paradigm 

during MRI scanning was a reduction of the probability of the trailing image given 

the leading image; P(trailing_expected|leading) = 0.5. Thus, now only in 50% of trials 

a leading image was followed by its expected trailing image. In the remaining 50% 

of trials, one of the other five trailing images would occur, making these images 

unexpected given that particular leading image (i.e., each unexpected trailing image 

had P(trailing_unexpected|leading) = 0.1). This was achieved by splitting the original 

12x12 transition matrix from day one into two 6x6 matrices (see Figure 3.6B). One 

6x6 matrix was used for each of the two tasks participants performed in the MRI 

(object categorization and character categorization tasks; see below). Thus, each 

expected trailing image was five times more likely given its leading image than any 

of the unexpected trailing images. Furthermore, each trailing image was only (un-)

expected by virtue of the leading image it followed, which in turn also ensured that all 

images occurred equally often throughout the experiment, excluding confounds due 

to stimulus frequency or familiarity. During MRI scanning, an infrared eye tracker 

(SensoMotoric Instruments, Berlin, Germany) was used to monitor and record the 

position and pupil size of the left eye, at 50 Hz. Finally, after MRI scanning, a brief pair 

recognition task was performed – for details see Pair recognition task below.

Object categorization task. During the object categorization task participants were 

required to categorize, as quickly and accurately as possible, the trailing object 

on each trial as either electronic or non-electronic. Thus, during this task it was 

beneficial to be able to predict the identity of the trailing object using the learned 

associations. Failing to respond, or responding later than 1500 ms after trailing image 

onset, was considered a miss. Because the 12x12 transition matrix was split into 

two 6x6 matrices, one for this task, one for the character categorization task, it was 

ensured that both 6x6 matrices contained three electronic and three non-electronic 

objects as trailing and leading images, ensuring an equal base rate of both categories. 

Before performing this task, it was explained that ‘electronic’ would be any object that 

contains any electronic components or requires electricity to be used. Furthermore, 

it was ensured that participants could correctly classify each object by displaying all 

objects on screen and requesting participants to verbally categorize and name each 

object before entering the MRI. 
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Character categorization task. Trials of the character categorization task were 

identical to the object categorization task, except that participants were instructed 

to categorize the trailing character on each trial as a letter (of the standard Latin 

alphabet: A, B, D, E, G, H, J, K, M, N, R, S) or non-letter (i.e., a symbol or letter of a 

non-Latin alphabet: €, $, =, +, ɸ, Ͽ, £, ‡, Ӵ,  ל, !, ?). While the presentation onset and 

duration of the characters coincided with the presentation of the object images, the 

identity of the trailing character was not predictable. As with the object images, six 

characters (three letters, three non-letters) were assigned as leading characters and 

six were assigned as trailing characters (three letters, three non-letters) for each of the 

two tasks (object and character categorization task). This was done to ensure that the 

character categorization task was as similar as possible to the object categorization 

task, and that exposure to the individual characters was as frequent as to the objects. 

Thus, in short, the rationale of the character categorization task was to draw attention 

away from the object stimuli and towards the characters, without imposing a heavy 

load on attentional or cognitive resources. Indeed, both tasks were designed to yield 

task performance at ceiling level. For both the object and character categorization 

tasks, feedback on behavioral performance was provided at the end of each run.

Procedure, MRI session. First, participants performed a brief practice run consisting 

of 50 trials (~5 minutes in duration) of either the object or character categorization task 

in the MRI. However, during the practice run, no unexpected trailing images occurred 

in order to retain the strong expectations built up during the learning session. 

Additionally, during the practice run, an anatomical image was acquired. After the 

practice run, two runs of the object or character categorization task were performed. 

Each run (~14 minutes) consisted of 120 trials and 7 null events of 12 seconds. Next, 

a practice run of the other task followed – i.e., if the object categorization task was 

performed first, the character categorization task would now follow, or vice versa. 

The task order was counter-balanced across participants. The practice run was again 

followed by two runs of the second task. After this, participants performed one 

functional localizer run (see: localizer). Finally, participants did a pair recognition task 

(see: Pair recognition task), assessing the learning of the object pairs. Once finished, 

participants were fully debriefed, and any remaining questions were addressed.

Localizer. We included a localizer session to define object-selective LOC for each 

participant and to constrain region of interest (ROI) masks to the most informative 

voxels using data from an independent, context-neutral run (i.e., without 

expectations). The functional localizer consisted of a repeated presentation of the 

previously seen trailing images and their phase-scrambled version. Images were 

presented for 12 seconds at a time, flashing at 2Hz (300 ms on, 200 ms off). At some 

point during stimulus presentation, the middle circle of the fixation dot would 
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dim. Participants were instructed to press a button, as fast as possible, once they 

detected the dimming of the fixation dot. Each trailing image was presented 6 times. 

Additionally, a phase-scrambled version of each trailing image was presented 3 times. 

Furthermore, 12 null events, each with a duration of 12 seconds were presented. The 

presentation order was fully randomized, except for excluding direct repetitions 

of the same image and ensuring that each trailing image once preceded and once 

followed a null event in order to optimize the design. 

Pair recognition task. The rationale of this task was to assess the learning of the 

object pairs (i.e, statistical regularities) and to compare whether participants learned 

the regularities during the objects attended task better than during the character 

categorization task. The pair recognition task followed the MRI session and consisted 

of the presentation of a leading image followed by two trailing images, one on the 

left and one on the right of the fixation dot. Participants were instructed to indicate, 

by button press, which of the two trailing images was more likely given the leading 

image. In order to prevent extensive learning during this task, a few trials with only 

unexpected trailing images were shown. Furthermore, participants were instructed 

that a response was required on each trial, even when they were unsure. Stimulus 

durations and intertrial intervals were identical to the learning session, i.e., 500 ms 

leading image, 500 ms trailing images, and a variable intertrial interval (1000-2000 

ms randomly sampled from a uniform distribution). A response had to be provided 

within 1500 ms after trailing image onset, or otherwise the trial was counted as a 

miss. Participants performed one block of this task, consisting of 240 trials.

Stimuli

Sixty-four full color object stimuli were used during the experiment. The object 

images were a selection of stimuli from Brady et al. [83], comprising typical object 

stimuli which were clearly electronic or non-electronic in nature (stimuli can 

be found here, DOI: 10.17605/OSF.IO/36TE7). Of these 64 object stimuli, 24 were 

randomly selected per participant, of which 12 were randomly assigned as leading 

images, while the other 12 served as trailing images. Thus, each specific image could 

occur as leading image for one participant, as trailing image for another participant, 

and not at all for a third participant, thereby minimizing the impact of any particular 

image’s features. Images spanned approximately 5° x 5° visual angle on a mid-gray 

background, both during the learning session and MRI scanning. During the learning 

session stimuli were presented on an LCD screen (BenQ XL2420T, 1920 x 1080 pixel 

resolution, 60 Hz refresh rate). During MRI scanning, stimuli were back-projected 

(EIKI LC-XL100 projector, 1024 x 768 pixel resolution, 60 Hz refresh rate) on an MRI-

compatible screen, visible using an adjustable mirror mounted on the head coil.
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We calculated the average relative luminance of the object stimuli by converting the 

stimulus images from sRGB to linear RGB, then calculated the relative luminance 

for all pixels (where relative luminance Y = 0.2126*R + 0.7152*G + 0.0722*B; [138]), and 

finally averaged the obtained luminance values, thereby obtaining the mean relative 

luminance per image. On this relative luminance scale, 0 would be a completely black 

image, while 1 would be a white image. The average relative luminance of the stimulus 

set was 0.225, while the relative luminance of the mid gray background, presented 

during the ITI, was 0.216.

fMRI data acquisition

Anatomical and functional images were acquired on a 3T Prisma scanner (Siemens, 

Erlangen, Germany), using a 32-channel head coil. Anatomical images were acquired 

using a T1-weighted magnetization prepared rapid gradient echo sequence (MP-RAGE; 

GRAPPA acceleration factor = 2, TR/TE = 2300/3.03 ms, voxel size 1 mm isotropic, 8° 

flip angle). Functional images were acquired using a whole-brain T2*-weighted 

multiband-6 sequence (time repetition [TR] / time echo [TE] = 1000/34.0 ms, 66 slices, 

voxel size 2 mm isotropic, 75° flip angle, A/P phase encoding direction, FOV = 210 mm, 

BW = 2090 Hz/Px). To allow for signal stabilization, the first five volumes of each run 

were discarded.

Data analysis

Behavioral data analysis 

Behavioral data from the main task MRI runs were analyzed in terms of reaction time 

(RT) and response accuracy. Trials with RT < 200 ms, RT > 1500 ms, or no response 

were rejected as outliers from RT analysis (1.56% of trials). The two factors of interest 

were expectation status (expected vs. unexpected) and attention (objects attended 

vs. objects unattended task). Thus, a 2x2 repeated measures analysis of variance 

(RM ANOVA) was used to analyze behavioral data, with the additional planned 

simple main effects analyses of expected vs. unexpected within each task condition 

using two-sided paired t-tests. For these tests, RT and accuracy data per participant 

were averaged across trials and subjected to the analyses. For all paired t-tests, the 

effect size was calculated in terms of Cohen’s dz [84], while partial eta-squared (η2), 

as implemented in JASP [139], was used as a measure of effect size for the RM ANOVA. 

Standard errors of the mean were calculated as the within-subject normalized 

standard error of the mean [85] with bias correction [86]. Data from the pair recognition 

task were analyzed by means of two-sided paired t-tests or Wilcoxon signed rank test, 

if the normality assumption was violated, comparing RTs and response accuracies 
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between image pairs belonging to the attended vs. unattended conditions. Effect size 

for Wilcoxon signed rank test was calculated as the matched rank biserial correlation 

(rb; [139]).

fMRI data preprocessing

fMRI data were preprocessed using FSL 5.0.11 (FMRIB Software Library; Oxford, UK; 

www.fmrib.ox.ac.uk/fsl; [87], RRID:SCR_002823). The preprocessing pipeline consisted 

of the following steps: brain extraction (BET), motion correction (MCFLIRT), grand 

mean scaling, temporal high-pass filtering (128 seconds). For univariate analyses, 

data were spatially smoothed (Gaussian kernel with full-width at half-maximum of 5 

mm), while for multivariate analyses no spatial smoothing was applied. FSL FLIRT was 

used to register functional images to the anatomical image (BBR) and the anatomical 

image to the MNI152 T1 2mm template brain using linear registration (12 degrees of 

freedom). Registration to the MNI152 standard brain was only applied for whole-brain 

analyses, while all ROI analyses were performed in each participant’s native space in 

order to minimize data interpolation. 

fMRI data analysis

FSL FEAT was used to fit voxel-wise general linear models (GLM) to each participant’s 

run data in an event-related approach. In these first-level GLMs, expected and 

unexpected image pair events were modeled as two separate regressors with a duration 

of one second (the combined duration of leading and trailing image) and convolved 

with a double gamma haemodynamic response function. An additional regressor of no 

interest was added to the GLM, modeling the instruction and performance summary 

screens. Moreover, the first temporal derivatives of these three regressors were added 

to the GLM. Finally, 24 motion regressors (FSL’s standard + extended set of motion 

parameters) were added to account for head motion, comprised of the six standard 

motion parameters, the squares of the six motion parameters, the derivatives of the 

standard motion parameters and the squares of the derivatives. The contrast of interest, 

expectation suppression, was defined as the BOLD response to unexpected minus 

expected images. FSL’s fixed effects analysis was used to combine data across runs. 

Because each run either used the objects attended or objects unattended (character 

categorization) task, two separate regressors were used in the fixed effects analysis, 

one for the objects attended task, one for the objects unattended task. Finally, across 

participants, data were combined using FSL’s mixed effects analysis (FLAME 1). Gaussian 

random-field cluster thresholding was used to correct for multiple comparisons, using 

the updated default settings of FSL 5.0.11, with a cluster formation threshold of p < 

0.001 (one-sided; i.e., z ≥ 3.1) and cluster significance threshold of p < 0.05.
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Region of interest (ROI) analysis

ROI analyses were conducted in each participant’s native space. The three a priori 

defined and preregistered ROIs were V1, object-selective LOC and TOFC. The choice 

of these ROIs was based on our previous study [113], in which we found significant 

expectation suppression in these cortical areas. For each ROI the mean parameter 

estimate was extracted from the participant’s parameter estimate maps, representing 

the expected and unexpected images. This was done separately for the objects 

attended and objects unattended tasks, thus resulting in four parameter of interest. 

The parameter estimates were divided by 100 to yield percent signal change 

relative to baseline [88]. For each ROI, these data were submitted to a 2x2 RM ANOVA 

with expectation (expected, unexpected) and attention (objects attended, objects 

unattended) as factors. Simple main effects were calculated for the expectation effect 

in each of the attention conditions using two-sided paired t-tests. As applicable, 

Cohen’s dz or partial eta-squared (η2) were calculated as measures of effect size. Again, 

the within-subject normalized standard error of the mean [85] with bias correction [86] 

was calculated as an indicator of the standard error.

ROI definition. All ROIs were preregistered and defined a priori, based on previous 

results, and refined using independent data. The three ROIs were V1, object selective 

LOC, and TOFC. V1 was defined based on each participant’s anatomical image, 

using Freesurfer 6.0 for cortex segmentation (recon-all; [97], RRID:SCR_001847). The 

resulting V1 labels were transformed into native volume space using ‘mri_label2vol’ 

and merged into one bilateral mask. LOC masks were created in each participant’s 

native space using data from the functional localizer. Object selective LOC was 

defined as bilateral clusters, within anatomical LOC, showing a significant preference 

for intact compared to scrambled object stimuli [95,96]. To this end, one regressor 

modeling intact objects and one regressor modeling scrambled objects were fit to 

each participant’s localizer data. Additional regressors of no interest were added to 

the model, with one regressor modeling instruction and performance screens, the 

temporal derivatives of all regressors, and the 24 motion regressor as also described 

above (see: fMRI data analysis). The contrast of interest, objects minus scrambles, 

was constrained to anatomical LOC, and the largest contiguous clusters in each 

hemisphere were extracted per participant. By default, the contrast was thresholded 

at z >= 5 (uncorrected; i.e., p < 1e-6). The threshold was lowered on a per participant 

basis if the resulting LOC clusters were too small; i.e., bilateral mask with less than 400 

voxels in native volume space. The TOFC ROI mask was created using an anatomical 

temporal-occipital fusiform cortex mask from the Harvard-Oxford cortical atlas 

(RRID:SCR_001476), as distributed with FSL. This mask was further constrained to 

voxels showing a significant expectation suppression effect on the group level in our 
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previous study, using an independent data set (Figure 2A in [113]). The resulting mask 

was transformed from MNI space to each participant’s native space using FSL FLIRT.

Finally, each of the three ROI masks were constrained to the 300 voxels forming 

the most informative neighborhoods concerning object identity decoding. This 

was done by performing a multi-voxel pattern analysis (see: Multi-voxel pattern 

analysis (MVPA)) on the localizer data set per participant, decoding object identity. 

This ensured that the final masks contained the voxels that were from the most 

informative neighborhoods in each respective mask. It was not required that the final 

mask formed one contiguous cluster. In order to verify that our results did not depend 

on the a priori defined but arbitrary number of voxels in the ROI masks, we repeated 

all ROI analyses with masks ranging from 100-400 voxels (i.e., 800 mm3 to 3200 mm3) 

in steps of 100 voxels.

Multi-voxel pattern analysis (MVPA)

A decoding analysis was performed on each participant’s localizer data. For this 

analysis, not spatially smoothed mean parameter estimate maps were obtained 

per localizer trial by fitting a GLM with only one trial as regressor of interest and all 

remaining trials as one regressor of no interest [89]. Subsequently, these parameter 

estimate maps were used in a multi-class, linear SVM-based decoding analysis (SVC 

function, Scikit-learn;  [90], RRID:SCR_002577), with the 12 trailing images as classes. 

The analysis was performed on the localizer data across the whole brain using a 

searchlight approach (6 mm radius) and stratified 4-fold cross-validation. Finally, 

the resulting decoding accuracy maps were used to constrain the ROI masks (see ROI 

definition).

We employed a similar decoding analysis to determine whether object-specific 

neural activity in the visual ventral stream was equally present during both the 

objects attended and unattended tasks. As above, a multi-class decoder with linear 

SVMs was used to decode object images. The per trial parameter estimates of the 

localizer run served as training data. For each main task run voxel-wise GLMs were 

fit with a regressor for each trailing image per expectation condition. As in the other 

fMRI analyses, the 24 motion regressors and temporal derivatives were added to the 

model (see fMRI data analysis). Finally, the decoder was tested on the obtained trailing 

image parameter estimates per run. As each attention condition consisted of six 

trailing images, chance performance of this decoder was at 16.7% (1/6).
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Stimulus specificity analysis

In an effort to further explore the nature of expectation suppression throughout the 

ventral visual stream, we investigated the stimulus specificity of the suppression 

effect. The key question here was if expectation suppression was primarily present in 

stimulus-driven voxels within a given area, or whether most voxels in an area showed 

the effect, regardless of whether or not they were stimulus-driven. 

In order to investigate specificity, we obtained anatomically defined masks of our 

three ROIs (V1, LOC, TOFC). For V1 the unconstrained, anatomically defined Freesurfer 

V1 mask was used (see ROI definition). Anatomical LOC and TOFC were defined using 

the Harvard-Oxford cortical atlas. FSL FAST was used to obtain a gray matter mask 

for each participant based on their anatomical scan. Masks were transformed to the 

participant’s native EPI space. Next, the three ROI masks were constrained to the 

participant’s gray matter voxels. Within the resulting ROI masks, using the contrast 

object stimuli compared to baseline from the functional localizer run, voxels were 

split into two categories, stimulus-driven (z > 1.96; i.e., p < 0.05, two-sided), and not 

stimulus-driven, but also not deactivated, voxels (-1.96 < z < 1.96). Average expectation 

suppression was compared between ROIs split into stimulus-driven vs. not stimulus-

driven voxels. Thus, a 3x2 RM ANOVA with ROI (V1, LOC, TOFC) and stimulus-

driven (stimulus-driven vs not stimulus-driven) as factors was used for analysis. 

Greenhouse-Geisser correction was applied, if Mauchly's sphericity test indicated 

a violation of the sphericity assumption. Furthermore, the simple main effect of 

stimulus-driven vs. not stimulus-driven was assessed within each ROI. Additionally, 

to test for the presence of any expectation suppression, the amount of suppression 

was compared against zero using one sample t-tests.

Pupillometry

In order to investigate whether pupil dilation effects accompany expectation 

suppression, we analyzed the pupil diameter data recorded during MRI scanning. 

A priori, two participants were rejected from this analysis, as the experiment log 

book indicated that pupil diameter data was unreliable for these two participants, 

leaving 32 participants for pupillometry. First, blinks were detected using a velocity 

based method, following the procedure outlined by Mathôt [140]. A blink was defined 

as a negative velocity peak (eyes closing), followed by a positive velocity peak (eyes 

opening) within a time period of 500 ms. The velocity threshold was set to 5 (arbitrary 

units). An additional 100 ms were added as padding before and after the detected 

blink onset and offset. If padding resulted in overlapping blink windows, consecutive 

blinks were considered as one long blink. Linear interpolation was used to replace 
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missing data during blinks (18.05% of data). Note, this number includes the padding, 

and all time periods of no interest, such as null events, instruction and performance 

screens, as well as recording periods before and after MRI run onset; i.e., periods 

during which participants were free to close their eyes. Remaining missing data, not 

following a typical blink profile, were excluded from analysis, again adding a padding 

of 100 ms (3.07% of data). Similarly, outlier data with implausible velocity profiles 

were also rejected from the analysis, using the same velocity-based threshold as for 

blink detection but without the criterion of a negative peak followed by a positive peak 

(5.30% of data). Thus, data interpolation was only applied for short time intervals, 

which represent a clear blink, in order to avoid interpolation based on artifacts or over 

exceedingly long time periods. Finally, pupil data were smoothed using a Hanning 

window of 200 ms, and epoched into trials from 1 second before trailing image 

onset to 4 seconds after trailing image onset. The data of each trial were baseline 

corrected by diving the pupil diameter estimates by the mean diameter during the 

baseline period, 0.5 to 0 seconds before leading image onset. As a final data quality 

check, all trials exceeding pupil diameter values 7 SDs above the mean pupil diameter 

were rejected (3.01% trials). Trials with expected trailing images and unexpected 

trailing images were averaged separately for each participant. The difference between 

unexpected minus expected was subjected to a cluster-based permutation test 

(100,000 permutations; two-sided p < 0.05; cluster formation threshold p < 0.05) in 

order to assess statistical significance. Data from the objects attended and the objects 

unattended tasks were analyzed separately. 

Linking pupil and neural measures

In an exploratory analysis we sought to provide additional evidence for an association 

between pupil dilation and expectation suppression. To this end, we correlated 

expectation suppression with pupil dilation differences between expected and 

unexpected objects per trailing image. First, we obtained per trailing image parameter 

estimates by fitting a voxel-wise GLM to the fMRI data for each run, following the 

same procedure as for the main fMRI data analysis, outlined in fMRI data analysis and 

Region of interest (ROI) analysis. The only difference was that a separate regressor per 

trailing image and expectation condition was fit, thus resulting in a model with 12 

regressors of interest (6 trailing images * 2 expectation conditions). As before, data 

was combined across runs using FSL’s fixed effect analysis. The resulting parameter 

estimate maps were extracted for each ROI (V1, LOC, TOFC) and converted to percent 

signal change. Finally, for each participant we calculated expectation suppression for 

each trailing image (expectation suppression = BOLDunexpected – BOLDexpected). Similarly, 

we calculated the difference in pupil dilation between unexpected and expected 

occurrences of each trailing image. For this we extracted the preprocessed (see: 
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Pupillometry) pupil size estimates for each trial and calculated the mean pupil size 

within the time window that showed a significant difference in pupil dilation between 

unexpected compared to expected attended stimuli on the group level (Figure 3.3, left 

panel); i.e., 1.52 to 2.88 seconds after trailing image onset. Next, we calculated the 

average difference in pupil size for each trailing image for unexpected compared to 

expected occurrences, thus yielding six pupil size difference scores (unexpected – 

expected) for both attention tasks per participant. Spearman’s rank correlation was 

then used to estimate the correlation between the pupil dilation differences and 

expectation suppression magnitudes for each participant. Therefore, this correlation 

expresses the correlation in ranks of pupil dilation differences and expectation 

suppression magnitude for the trailing images, with positive correlations indicating 

that trailing images with large expectation suppression effects are also associated 

with larger pupil dilation differences. The obtained correlation coefficients were 

Fisher z-transformed and compared against zero (no correlation) using one-sample 

t-tests for each ROI and attention condition. We also submitted the coefficients to a 

repeated measures ANOVA with ROI and attention as factors.

Linking behavioral and neural measures

In another exploratory analysis we investigated the relationship between behavioral 

and neural benefits of expectations by correlating expectation suppression with 

the behavioral RT benefit for expected stimuli observed during MRI scanning. 

First, we calculated the RT benefit for each trailing image during the main fMRI 

task (RTbenefit = RTunexpected – RTexpected, per trailing image). Within each ROI we then 

correlated expectation suppression per trailing image (see: Linking pupil and neural 

measures) with RT benefit per trailing image using Spearman's rank correlation. Thus, 

this correlation coefficient indicates the rank correlation of expectation induced RT 

benefits and expectation suppression magnitude for the different trailing images. 

For statistical inference across participants, we Fisher z-transformed the correlation 

coefficients, and tested whether the observed correlation coefficients differ from zero 

(no correlation) in each condition by performing one-sample t-tests for each ROI and 

attention task separately. Finally, we also compared the magnitude of the correlations 

between ROIs and attention tasks using a 3x2 repeated measures ANOVA with ROI and 

attention condition (task) as factors.

Bayesian analyses

In order to further evaluate any non-significant tests, in particular simple main 

effects, we performed the Bayesian equivalents of the above outlined analyses. 

JASP 0.9.0.1 ([139]; RRID:SCR_015823) was used to perform all Bayesian analyses, 
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using default settings. Thus, for Bayesian t-tests a Cauchy prior width of 0.707 was 

chosen. Qualitative interpretations of Bayes Factors are based on criteria by Lee and 

Wagenmakers [94].

Software

MRI data preprocessing and analysis was performed using FSL 5.0.11 (FMRIB Software 

Library; Oxford, UK; www.fmrib.ox.ac.uk/fsl; [87], RRID:SCR_002823). Custom Python 

2.7.13 (Python Software Foundation, RRID:SCR_008394) scripts were used for additional 

analyses, data handling, statistical tests and data visualization. The following Python 

libraries and toolboxes were used: NumPy 1.12.1 ([98], RRID:SCR_008633), SciPy 0.19.0 

([99], RRID:SCR_008058), Matplotlib 1.5.1 ([100], RRID:SCR_008624), Statsmodels 0.8.0 

(www.statsmodels.org) and Scikit-learn 0.18.1 ([90], RRID:SCR_002577). Additionally, 

Slice Display [102], a Matlab 2017a (The MathWorks, Inc., Natick, Massachusetts, United 

States, RRID:SCR_001622) data visualization toolbox, was used for displaying whole-

brain results. JASP 0.9.0.1 ([139], RRID:SCR_015823) was used for Bayesian analyses 

and RM ANOVAs. Stimuli were presented using Presentation® software (version 18.3, 

Neurobehavioral Systems, Inc., Berkeley, CA, RRID:SCR_002521).

Supplemental analyses

Pupil dilation is associated with larger BOLD responses

In order to provide additional support for the hypothesis that pupil dilation 

differences may partially underlie expectation suppression in V1, we examined 

the relationship between pupil dilation and the BOLD response. First, we extracted 

per trial pupil size data and parameter estimate maps from the fMRI main task data 

for V1. Pupil size data was preprocessed as described in Pupillometry, and extracted 

from a three-second time window, starting with trailing image onset and ending 2.5 

seconds after trailing image offset; thus, the time window covered the full duration 

shown in Figure 3.3 after trailing image onset. fMRI data was preprocessed as outlined 

in fMRI data preprocessing. Next, for each trial we fitted a GLM with only one trial 

as regressor of interest and all remaining trials as regressors of no interest [89]. Per 

participant, we extracted the per trial parameter estimate maps, averaged within the 

V1 ROI, and z scored the mean parameter estimates per condition separately in order 

to remove potential effects of mean differences between the conditions. We also 

z scored the pupil size estimates per condition for the same reason. Next, we fitted 

per participant a GLM with the mean BOLD parameter estimates (one per trial) as 

predicted variable and a regressor with pupil size for each expectation and attention 

condition combination (i.e., four regressors of interest) as predictors. Statistical 
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inference across subjects was performed by subjecting the thus obtained parameter 

estimates of the four regressors of interest to a 2x2 repeated measures ANOVA, as with 

our main ROI analysis; i.e., with attention and expectation as factors. Furthermore, in 

order to assess whether the BOLD response was influenced by pupil dilation at all we 

performed one-sample t-tests comparing the obtained parameter estimates against 

zero for each condition separately. Additionally, we performed a similar analysis, 

but split the fMRI data into stimulus-driven vs. non-stimulus-driven V1 gray matter 

voxels (see Stimulus specificity analysis for details on the ROI mask creation). This 

analysis thus results in a 2x2x2 repeated measures ANOVA with expectation, attention 

and stimulus-responsiveness as factors.

Increased pupil dilations were associated with larger BOLD responses regardless 

of whether stimuli were attended and expected (attended expected: t(31) = 3.006, p = 

0.005, dz = 0.531; attended unexpected: t(31) = 4.392, p = 1.2e-4, dz = 0.776; unattended 

expected: t(31) = 5.228, p = 1.1e-5, dz = 0.924; unattended unexpected: W = 452, p = 2.1e-4, 

rB = 0.712). Results are shown in Figure 3.3–figure supplement 1. Pupil dilation led to 

slightly stronger BOLD increases when objects were unattended than attended (F(1,31) 

= 5.563, p = 0.025, η² = 0.152), but independent of whether stimuli were expected or 

unexpected (F(1,31) = 0.054, p = 0.817, η² = 0.002; interaction: F(1,31) = 2.261, p = 0.143, η² 

= 0.068). Thus, pupil dilation had a positive effect on overall BOLD responses in V1. 

 

FIGURE 3.3–FIGURE SUPPLEMENT 1  Pupil dilation influences BOLD responses in V1.

Displayed are the parameter estimates of the influence of pupil size on BOLD responses in 
V1. BOLD responses increase with larger pupil dilations regardless of whether stimuli were 
attended and expected. However, pupil dilation influenced BOLD responses more when 
objects were unattended than attended. Whether stimuli were expected or unexpected did not 
change the association between BOLD and pupil dilation. Error bars indicate within-subject 
SEM. * p < 0.05, ** p < 0.01, *** p < 0.001. 
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Pupil dilation influences BOLD responses more in non-stimulus-driven V1 voxels

Next, we assessed whether the same association would hold in stimulus-driven and 

non-stimulus driven V1 voxels. Figure 3.3–figure supplement 2 shows that there was 

indeed a reliable, positive association between BOLD responses and pupil dilation 

within both stimulus-driven and non-stimulus-driven voxels. Again, larger pupil 

dilations were predictive of enhanced BOLD responses when object stimuli were 

attended and unattended, as well as for expected and unexpected objects (all t-tests 

p < 0.05). Interestingly, this association was somewhat larger in non-stimulus-

driven than stimulus-driven voxels (F(1,31) = 9.267, p = 0.005, η² = 0.230), suggesting 

that the association between BOLD and pupil dilation is particularly strong for 

those neural populations that are not driven by our object stimuli. This is in line 

with earlier observations that non-stimulus-driven activations (possibly reflecting 

neuromodulation) are greater in regions that represent more peripheral parts of the 

visual field [129]. There was also a stronger association of pupil dilation and BOLD 

responses when objects were unattended (F(1,31) = 5.042, p = 0.032, η² = 0.140), but the 

magnitude of the association was not affected by whether a stimulus was expected or 

not (F(1,31) = 0.008, p = 0.928, η² = 2.6e-4). Moreover, no interaction effect was observed 

(all interactions p > 0.1).

 

FIGURE 3.3–FIGURE SUPPLEMENT 2  Pupil dilation influences BOLD responses more in 
non-stimulus-driven than stimulus-driven V1 voxels.

Displayed are the parameter estimates of the influence of pupil size on BOLD responses in 
V1. BOLD responses increase with larger pupil dilation. This association was stronger in non-
stimulus-driven (left) than stimulus-driven (right) V1 gray matter voxels. Error bars indicate 
within-subject SEM. * p < 0.05, ** p < 0.01, *** p < 0.001.
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Thus, to summarize, our results show that pupil dilation has a substantial, positive 

association with V1 BOLD responses, regardless of whether stimuli were attended and 

expected, for both stimulus-driven and non-stimulus-driven neural populations. 

This result is expected, given that pupil dilation has been related to other processes 

known to correlate with BOLD responses such as mental effort, arousal and attention 

(for a review see: [141]). Moreover, increases in retinal illumination due to larger pupil 

dilation can also result in increased BOLD activity [135]. These results support our 

suggestion that larger pupil dilations in response to unexpected stimuli, possibly 

reflecting general arousal mechanisms, may partially account for expectation 

suppression in V1. However, it should also be noted that the association between pupil 

dilation and the BOLD response is not solely observed when objects were attended, 

as pupil dilation is likely a general reflection of vigilance and arousal [115,116], which is 

expected to fluctuate also when the objects are not attended. That this association is 

more pronounced in non-stimulus-driven voxels, further supports the possibility that 

expectation suppression in V1, including the suppression observed in non-stimulus-

driven voxels, may partially reflect non-perceptual effects such as arousal changes, 

which are reflected by larger pupil dilations in response to surprising stimuli.

No differences in pupil dilation during baseline

We assessed pupil size during baseline to ensure that differences in pupil dilation 

between expectation conditions or attention tasks do not simply reflect difference in 

baseline (e.g., pre-stimulus arousal differences). Pupil data was preprocessed using 

the same pipeline as described in Pupillometry, except for that pupil size was extracted 

in raw units during the baseline period. Per participant, pupil size was then averaged 

for each attention and expectation condition separately. Mean pupil estimates were 

then compared between conditions using a 2x2 repeated measures ANOVA, with 

expectation and attention as factors. Additionally, a Bayesian repeated measure 

ANOVA was conducted to quantify the evidence for the absence of a difference in 

pupil size during baseline.

Results showed that there was no difference in baseline pupil size before attended 

compared to unattended stimuli (F(1,31) = 5.226, p = 0.484, η² = 0.016, BFinclusion = 0.254), 

nor before expected compared to unexpected stimuli (F(1,31) = 0.001, p = 0.926, η² 

= 2.8e-4, BFinclusion = 0.136; interaction: F(1,31) = 6.2e-4, p = 0.955, η² = 1.0e-4, BFinclusion = 

0.042). Figure 3.3–figure supplement 3 shows the pupil size in raw units during the 

baseline period. Thus, data suggest that pupil size, and thereby likely arousal, during 

baseline was of a similar magnitude during both attention tasks and expectation 

conditions, thereby rendering an explanation of the observed phasic differences in 

pupil size based on differences in baseline pupil size unlikely. 
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FIGURE 3.3–FIGURE SUPPLEMENT 3  No difference in baseline pupil size between attention 
tasks, nor expectation conditions.

Displayed are mean pupil sizes during the baseline period in raw units for expected and 
unexpected trials during the objects attended and unattended task. Pupil sizes during baseline 
were similar for trials with expected and unexpected object stimuli, as well as during both 
tasks. Error bars indicate within-subject SEM. 
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Supplemental Information

SUPPLEMENTARY FILE 3.1  Overview of expectation suppression across cortex.

Brain areas showing significant expectation suppression (GRF cluster corrected). Listed are 
significant clusters with their respective area label, MNI coordinate of the peak z value, the 
number of voxels in the cluster, as well as the p value of the cluster and its max z statistic. For 
large clusters (n voxels > 700) additional local z maxima (z > 3.72; i.e., p < 0.0001, one-sided) are 
also shown with area label, MNI coordinates and max z statistic. Unexp. = unexpected image 
pairs; Exp. = expected image pairs; Att. = objects attended task; Unatt. = objects unattended 
(characters attended) task.

Contrast Area label MNI coordinates n voxels p cluster max z
    x y z      

Unexp. > Exp. Lateral Occipital Cortex, inferior 
division

-48 -72 -14 1536 4.1e-15 4.61

(Att.) Temporal Occipital Fusiform Cortex -34 -52 -18 4.58
Lingual Gyrus -22 -52 -10 4.51
Temporal Fusiform Cortex, posterior 
division

30 -38 -20 535 3.6e-7 4.96

Lateral Occipital Cortex, inferior 
division

48 -68 -12 373 1.6e-5 4.24

Precentral Gyrus 48 4 34 1456 1.5e-14 4.68
Frontal Operculum Cortex 44 20 -2 4.63
Inferior Frontal Gyrus, pars opercularis 50 14 28 4.56
Frontal Orbital Cortex 34 26 -4 4.36
Precentral Gyrus -42 -2 36 471 1.5e-6 4.36
Frontal Operculum Cortex -40 18 0 156 0.0079 3.94
Superior Frontal Gyrus 4 18 56 626 6.0e-8 4.39
Superior Parietal Lobule -26 -56 48 329 5.0e-5 4.31
Superior Parietal Lobule 30 -48 46 173 0.0046 4.36
Cerebellum, Vermis VI -4 -64 -18 128 0.0210 4.61
Cerebellum, Left Crus I -10 -76 -30 126 0.0226 4.32

Unexp. > Exp. - - - - - -
(Unatt.)
[Unexp. > Exp. Lateral Occipital Cortex, inferior 

division
-46 -70 -12 745 6.4e-9 4.48

(Att.)] Temporal Occipital Fusiform Cortex -42 -62 -14 4.28
> Inferior Temporal Gyrus, 

temporooccipital part
-46 -50 -16 4.12

[Unexp. > Exp. Temporal Fusiform Cortex, posterior 
division

30 -38 -24 173 0.0053 4.77

(Unatt.)] Lateral Occipital Cortex, inferior 
division

50 -66 -14 139 0.0161 3.87

Precentral Gyrus 38 8 26 222 0.0012 4.32
Frontal Operculum Cortex -40 16 2 119 0.0322 3.81
Lateral Occipital Cortex, superior 
division

-22 -62 36 117 0.0345 3.75

Cerebellum, Left Crus II -10 -76 -34 125 0.0260 3.83
Precuneous Cortex 0 -62 12 116 0.0358 3.84
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Abstract

Expectations, derived from previous experience, can help in making perception faster, 

more reliable and informative. A key neural signature of perceptual expectations is 

expectation suppression, an attenuated neural response to expected compared to 

unexpected stimuli. While expectation suppression has been reported using a variety 

of paradigms and recording methods, it remains unclear what neural modulation 

underlies this response attenuation. Sharpening models propose that neural 

populations tuned away from an expected stimulus are particularly suppressed by 

expectations, thereby resulting in an attenuated, but sharper population response. 

In contrast, dampening models suggest that neural populations tuned towards the 

expected stimulus are most suppressed, thus resulting in a dampened, less redundant 

population response. Empirical support is divided, with some studies favoring 

sharpening, while others support dampening. A key limitation of previous studies is 

the ability to draw inferences about neural-level modulations based on population 

(e.g., voxel) level signals, which integrate over millions of neurons (e.g., the BOLD 

response). Indeed, recent simulations of repetition suppression showed that 

opposite neural modulations can lead to comparable population-level modulations. 

Forward models provide one possible solution to this inference limitation. We used 

forward models to implement both sharpening and dampening models, mapping 

individual neural modulations to voxel-level data. By comparing simulated neural 

responses to a combined analysis of two previously published fMRI studies, we show 

that a feature-unspecific gain modulation underlies expectation suppression in early 

visual cortex. However, in higher-order object selective visual areas feature-specific 

gain modulations, suppressing neurons particularly tuned towards the expected 

stimulus, best explain the empirical fMRI data. Thus, our results are in line with 

the dampening account, suggesting that expectations may reduce redundancy in 

sensory cortex, and promote updating of internal models on the basis of surprising 

information.
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Introduction

The perceptual system faces at least two challenges: to represent the world as quickly 

and accurately as possible, and to promote processing of novel information. Relying 

on previous experience to guide perception may help to meet both challenges 

[44], and is advantageous to an agent acting in an information rich environment. 

Indeed, deriving expectations from previous experience aids performance, enabling 

faster and more accurate responses to expected events [9,51,58,59]. Within cortex, 

the consequences of prior expectations are evident during sensory processing in 

both early and higher visual areas [19]. One well-established neural consequence of 

prediction in perception is expectation suppression: the attenuation of sensory 

responses to expected compared to unexpected stimuli. Expectation suppression has 

been reported in several sensory modalities and species, using different recording 

methods, in a wide range of paradigms (for reviews see: [19,20]).

However, it remains unclear what neural mechanism underlies this phenomenon. 

On the one hand, population sharpening models propose that expectations 

preferentially suppress neurons tuned away from the expected stimulus [18,41,142]. 

By inhibiting information that is inconsistent with top-down expectations, such 

a sharpening process would bias perception in line with our expectations, echoing 

Bayesian models of perception [5,6]. The net result is a response that is reduced in 

amplitude, but carries a sharper, more reliable representation of the stimulus. On 

the other hand, dampening (or cancellation [42]) models argue that expectations 

preferentially suppress neurons tuned towards expected stimuli [23,43,79,113,143]. By 

cancelling information in line with prior expectations, the brain would reduce 

redundancy in the sensory stream, while at the same time favoring processing of 

novel or surprising information. Thus, on this account responses are reduced and 

neural representations of expected stimuli dampened.

To date, studies that tried to arbitrate between these two accounts have yielded 

mixed results. In line with population sharpening, some studies [18,142] found that 

expected stimuli evoked weaker BOLD responses, but that stimulus identity was 

more accurately decoded from those same BOLD responses – suggesting a sharper 

representation. Moreover, it was found that expectation suppression was weaker in 

voxels that responded more strongly to the expected stimulus, in agreement with the 

hypothesized suppression of inconsistent information [18]. However, other studies 

using similar techniques found the opposite pattern of effects: reduced classification 

accuracies [143] or pattern similarities [43] for expected stimuli, and larger suppression 

magnitudes for preferred compared to non-preferred stimuli [113], in line with 

dampening accounts. One possible explanation for these inconsistencies is that the 
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observed BOLD or MEG signal integrates over millions of neurons, making it difficult 

to infer neural-level mechanisms from population-level measurements. Indeed, in 

the domain of sensory adaptation, Alink et al. [105], building on work by Weiner et al. 

[144], recently showed that the relation between neural-level mechanisms and voxel-

level results can be rather counter intuitive. Their simulations suggest, for instance, 

that a dampening-like mechanism at the neural-level can, in principle, manifest 

as a sharpening-like result at the voxel-level – and vice versa. To overcome these 

interpretational difficulties, Alink et al. [105] proposed a forward modelling approach 

to explicitly model which underlying neural-level mechanism could best explain 

the observed voxel-level adaptation results. While adaptation and expectation are 

distinct phenomena [22,62,110], they share some key characteristics. This make an 

analogous approach suitable to investigate expectation suppression.

Here, we build on and extend the approach of Alink et al. [105] and Weiner et al. [144], 

by using forward models to elucidate the neural mechanism underlying expectation 

suppression in the ventral visual stream. First, we analyzed and integrated data of two 

previously published studies [113,145], which manipulated perceptual expectations by 

presenting human volunteers (n = 56) with expected and unexpected objects images. 

For both studies, the effects of expectation were characterized in terms of eight 

fMRI outcome metrics, both univariate and multivariate. These metrics were based 

on previous studies, where they were interpreted as evidence for either sharpening 

[18,142] or dampening accounts [43,113,143]. This resulted in a specific pattern of effects of 

expectation within three regions of interest (ROIs) across the ventral visual stream: 

primary visual cortex (V1), object selective lateral occipital complex (LOC), and 

temporal occipital fusiform cortex (TOFC). Next, we used forward models to explicitly 

model which neural mechanism best explained the observed effects in each ROI. We 

implemented a set of six distinct models, which all predict a suppression of neural 

responses to expected stimuli, but differ in terms of the underlying mechanism of 

that suppression. In particular, we defined dampening as a local feature-specific 

gain modulation [113,143], in which the gain of neural populations tuned towards 

the expected stimulus features is reduced. Conversely, we defined population 

sharpening as a remote feature-specific gain modulation [18,142], in which the gain 

of neural populations tuned away from the expected stimulus features is reduced. 

Moreover, we modeled previously suggested feature-unspecific effects as a global 

gain modulation [113,145]. As an additional competitor, we also implemented response 

tuning models, that narrow the width of the response function. These models have 

been suggested in the wider literature, as underlying response modulations for 

related phenomena like attention and adaptation  [146–148].
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To foreshadow the results, we show that perceptual expectations in the ventral 

visual stream are best modeled by a feature-specific local gain modulation of neural 

responses. Thus, our results, particularly in higher visual areas LOC and TOFC, are 

in line with dampening accounts of expectations, which advocate a suppression of 

neural responses particularly for neural populations tuned towards the expected 

stimulus features. This dampening of neural responses suggests that perceptual 

expectations, derived from statistical regularities, may reduce information 

redundancy and bias information processing towards surprising, novel information.

Results

In a first step, we analyzed the empirical fMRI data using eight outcome metrics used in 

previous studies investigating population sharpening and dampening [18,43,105,113,142,143]. 

Next, using independent fMRI data, we validated the implemented stimulus feature 

spaces, which were used to model neural responses to each object stimulus in an ROI 

specific fashion. We then performed the simulation and analyzed the fit of the different 

models to the empirical results. Mimicking the interpretation in most empirical 

studies, we first assessed the qualitative fit in terms of the sign of the slopes per outcome 

metric. Additionally, we analyzed the fit in a more detailed, quantitative fashion by 

calculating the mean squared error (MSE) between the simulated and empirical results, 

and assessed which model type best explained the empirical data. Finally, we explored 

which parameter values resulted in the optimal fit, thereby exploring the circumstances 

under which the models best explain the observed data.

Empirical fMRI data

First, we analyzed the empirical fMRI data. In brief, we utilized eight different outcome 

metrics, based on analyses used in previous studies (e.g. [18,43,105,113,142,143]). (1) Mean 

amplitude modulation (MAM) due to a stimulus being expected vs unexpected; i.e., 

expectation suppression. (2) Within-class correlation (WC) and (3) between-class 

correlation (BC) between stimuli, for expected and unexpected occurrences of the 

stimuli. (4) Classification performance (CP) defined as the difference between BC-

WC for expected and unexpected stimuli respectively, as well as (5) classification 

performance using linear support vector machines (SVM). (6) Amplitude modulation 

by amplitude (AMA), the amplitude modulation by expectation as a function of voxel 

mean amplitude. (7) Amplitude modulation by selectivity (AMS), the amplitude 

modulation by expectation as function of voxel mean selectivity. (8) Image preference 

analysis (IP), assessing the mean amplitude modulation within a voxel as a function of 

image preference. Details are described in: Materials and Methods, MRI outcome metrics. 
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FIGURE 4.1  Empirical fMRI results. 

Shown are empirical fMRI data analysis results from V1, LOC, and TOFC from a combined 
analysis of data from Richter and de Lange ([145]; n = 34) and Richter et al. ([113]; n = 22). These 
results constitute the data features the subsequent simulations are compared against. Un. = 
Unexpected trials, i.e., when the trailing image was unexpected given the leading image. Ex. = 
expected trials, i.e., when the trailing image was expected given the leading image. Outcome 
metrics: MAM = mean amplitude modulation (expectation suppression), WC = within-class 
correlation, BC = between-class correlation, CP = classification performance (BC-WC), SVM 
= support vector machine based classification (chance level is ~15%), AMA = amplitude 
modulation by amplitude, AMS = amplitude modulation by selectivity, IP = image preference 
analysis (amplitude modulation by image preference). For display purposes, only IP data of 
images 2-7 from Richter et al. [113] are displayed, but all image data were analyzed. 

 

Figure 4.1 depicts the fMRI results from the three ROIs, V1, LOC, and TOFC. Data 

from Richter and de Lange [145], and Richter et al. [113] was combined by pooling 

participants. In all ROIs a substantial modulation of MAM is evident, with expected 

stimuli being suppressed relative to unexpected ones; i.e., constituting expectation 

suppression, the key phenomenon of interest. Furthermore, clear difference 
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between WC and BC emerge between expected and unexpected stimuli, resulting 

in improved classification accuracies (CP, SVM) for unexpected stimuli in V1, while 

LOC and TOFC show a similar albeit less reliable pattern. Moreover, voxel with larger 

mean amplitude (AMA) and selectivity (AMS) show more expectation suppression 

(BOLDunexpected – BOLDexpected) in all ROIs. A similar, albeit less clear trend, is also evident 

within voxels, with larger suppression for more preferred stimuli (IP) in V1 and TOFC. 

Since the goal of the analysis is only to estimate data features, which are subsequently 

used to compare the simulation against, we do not report inferential statistics here. 

However, for completeness, a full set of statistics, corresponding to the results 

displayed in Figure 4.1, are summarized in supporting tables S4.1 (V1), S4.2 (LOC), and 

S4.3 (TOFC). Overall, empirical results are comparable between the three ROIs, with 

differences mainly emerging in terms of variability and effect sizes, while the sign of 

the effects (slopes) are generally the same.

Feature space models explain neural variance in target ROIs

Because we modeled neural responses to different stimuli we had to establish for each 

ROI a feature space model, which reliably describes the object stimuli in a manner 

relevant to the neural responses in the target ROIs (V1, LOC, TOFC). V1 feature space 

was defined by the predominant orientation of the object stimuli, as V1 neurons are 

tuned to stimulus orientation [33]. LOC responses were modeled by shape complexity, 

based on Vernon et al. [34]. TOFC feature space was derived from human-rated 

semantic similarity, which is thought to correlate with complex visual features [149]. 

Additional details are described in Materials and Methods, Feature space. 

In order to verify that each feature space captured significant variance in neural 

response, we performed a representation similarity analysis (RSA), using 

independent localizer data. In brief, for each participant we correlated the feature 

space (model) representational dissimilarity matrix (RDM) with the neural RDM. 

Subsequently, we compared the obtained correlation coefficients against zero (i.e., no 

correlation between feature space and neural RDM). RSA results, depicted in Figure 

4.2, show that the feature spaces explained a significant amount of neural variance 

in their target ROIs (V1, orientation feature space: t(55) = 6.23, p = 6.9e-8, dz = 0.83; LOC, 

shape feature space: t(55) = 5.21, p = 2.9e-6, dz = 0.70; TOFC, semantic feature space: t(55) 

= 3.03, p = 0.004, dz = 0.40). Detailed results of all associated tests are summarized 

in Table S4.4 and S4.5. In sum, the designed feature spaces reliably capture neural 

variance in their target ROIs, thereby validating the usefulness of these ROI specific 

feature space models.
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FIGURE 4.2  Stimulus feature space models explain neural variance in target ROIs. 

Shown are RSA results, in terms of Fisher z-transformed Spearman’s Rho (ρ), per ROI (V1, LOC, 
TOFC) and feature space model (blue = orientation feature space, green = shape complexity 
feature space, yellow = semantic similarity feature space). In V1 only the orientation feature 
space (blue) explains significant neural variance. In LOC all three models explain some neural 
variance, however numerically the shape complexity model (green) outperforms both other 
feature space models. In TOFC the semantic similarity and shape complexity feature space 
models explain significant neural variance, however the semantic similarity model explains 
numerically the most variance of neural responses. Thus, the designed feature spaces reliably 
capture neural variance in their target ROIs, validating the usefulness of the feature space 
models. Error bars indicate the SEM. * p < 0.05, ** p < 0.01, *** p < 0.001.

 
Simulation procedure

An overview of the simulation procedure is depicted in Figure 4.3A, and details are 

described in Materials and Methods, Simulation. In brief, we model neural responses 

to object stimuli using neural response functions, which model neural responses 

depending on the neuron’s response tuning and the properties of the stimulus in 

feature space.

Biased sampling [150] and macroscale maps [151] are two leading account of how 

stimulus selectivity arises in fMRI voxel data. We used a simple implementation 

in line with these accounts by random sampling a limited number of neurons with 

different feature tunings to form voxels [105]. As a consequence of the limited random 

sampling, simulated voxels showed distinct response preferences for different 

stimuli akin to the responses seen in empirical fMRI data. For more details see: 

Materials and Methods, Simulation, Simulating voxels. We then presented to these 

simulated voxels the same stimuli, on the same number of trials, as to the human 

volunteers during the fMRI experiments.
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Neural responses for expected stimuli were modulated according to six distinct 

models, depicted in Figure 4.3B. Two classes of modulations were employed. Gain 

modulations linearly scaled the responsiveness of neurons, without modulating 

the shape of the response function. Tuning modulations narrowed the shape 

of the response function in feature space, but did not affect the peak amplitude. 

Additionally, three distance functions were implemented, determining where in 

feature space, relative to the expected stimulus feature, the modulation was applied. 

For global models modulations were applied equally across neural populations in 

feature space. In local models neural populations tuned towards the expected feature 

value were modulated, while in remote models neural populations tuned away from 

the expected feature value were modulated. Thus, the local gain modulation model 

represented dampening (cancellation) accounts, and the remote gain modulation 

model population sharpening accounts. 

Simulated data was analyzed using the analysis pipeline as designed for the empirical 

data, relying on the eight outcome metrics described above. The entire procedure was 

repeated for each model type across a large parameter grid (n = 7,820; for details see: 

Materials and Methods, Simulation, Parameter grid), extensively exploring the three 

free model parameters: a (suppression magnitude), b (effect of distance in feature 

space), and  (width of neural response function).
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FIGURE 4.3  Simulation procedure and expectation models. 

(A) Overview of the empirical data acquisition and analysis, as well as the simulation 
procedure. On the left, the procedure for empirical fMRI data is depicted. Human volunteers 
were presented with object images, the identity of which was governed by statistical 
regularities, thereby making the objects expected or unexpected by virtue of the preceding 
image. The resulting fMRI data was analyzed using eight different outcome metrics (for 
details see: Materials and Methods, Empirical fMRI data and MRI outcome metrics). The right 
side illustrates the simulation procedure. Starting from the top, neural responses to different 
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object stimuli were simulated in a ROI specific fashion, using empirically validated custom 
feature spaces (Figure 4.2). Responses to expected stimuli were modulated using six different 
models. A fine-tuned amount of noise was added to the simulated response patterns, based 
on estimates of noise in the empirical data. Next, simulated data was analyzed using the 
analysis metrics also used for the empirical fMRI data analysis. Finally, simulated and 
empirical results were compared in terms of the sign of the slopes per outcome metric, as 
well as in a more fine-grained fashion by calculating the mean squared error (MSE). For 
details see: Materials and Methods, Simulation. (B) Neural response functions, and their 
modulation by expectation. Depicted are illustrations of the six neural response modulation 
models. Thin black lines denote unmodulated response functions across feature space. 
Red lines are modulated responses. Thick lines indicate the normalized summed response. 
The depicted example is from V1, thus representing a circular feature space. Green shows 
the position of an example stimulus in feature space. Starting from the top left: Global gain 
modulation reduces the amplitude of the modulated response by a multiplicative factor (a) 
evenly across feature space. Local gain modulation (dampening model) reduces the amplitude 
by a multiplicative factor, however the magnitude of the response modulation depends on 
the distance between the expected stimulus and the response function (effect of distance 
is modulated by the b parameter). Remote gain modulation (sharpening model) is identical 
to local gain modulation, except that neural populations tuned away from the expected 
stimulus are modulated. The tuning models (bottom row) reduce the width of the response 
function, with the magnitude of the reduction controlled by parameter a, thereby resulting 
in a more selective response. As with gain modulation models, the three distance functions 
apply. For details see: Materials and Methods, Simulation, Modulation by expectations. Note 
that the modulation by expectation is conditional on an expected stimulus being presented, 
thus modelling a top-down modulation. As such, the red curves should not be seen as full 
tuning curves, but rather as an illustration how expectation differentially modulates different 
neural populations as a function of their tuning. See supporting Text S4.1 and Figure S4.1 for a 
discussion and illustration of alternative implementations.

Simulation results

Voxel-level results can be accounted for by opposite neural models

With the empirical fMRI results established, we performed the simulation. First, 

we analyzed results by comparing the sign of slopes per outcome metric between 

the empirical and simulated results, following the procedure from Alink et al. [105]. 

The rationale for this approach is that such qualitative interpretations of analysis 

results are used in most empirical fMRI and MEG studies. For example, improved 

classification accuracies of expected stimuli have been used as evidence for 

population sharpening [18,142], and decreased accuracies for dampening [143]; indeed, 

similar qualitative interpretations apply for the other metrics as well, e.g. [43,113]. 

In V1, all six model types could, at least under one parameter combination, match the 

sign of the slopes of all eight outcome metrics found in the empirical data. Similarly 

in LOC, all model types succeeded in fitting the sign of seven of the eight empirical 

outcome metrics. Finally, in TOFC, three model types fit the sign of all eight empirical 
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results (remote gain modulation, local and remote tuning), while three model types 

matched seven outcome slopes (global and local gain modulation, global tuning). 

These results show that no single voxel-level outcome, nor the combination of all 

eight outcome metrics, was uniquely characteristic of sharpening or dampening, 

nor any of the other implemented neural mechanisms. Thus, relying on a qualitative 

interpretation of only the sign of the slopes of the voxel-level results had only limited 

utility for the inference about underlying neural modulations, because all six models 

could replicate the observed slopes of (almost) all outcome metrics across the three 

ROIs. This conclusion is surprising and contrasts with the results reported by Alink et 

al. [105], who observed that only one model could qualitatively account for all outcome 

metrics with a single set of parameters. Therefore they concluded that this model 

best explained the results overall. In our case, such qualitative reasoning alone does 

not suffice, because all models had at least one set of parameters that qualitatively 

matched (almost) all outcome metrics, potentially because we searched a finer and 

broader grid of parameters, and simulated stimuli throughout the modeled feature-

space (see Discussion).

While the present data showed that a similar qualitative analysis does not suffice 

to uniquely identify the best model, results depicted Figure 4.4, also demonstrated 

that the proportion of parameter combinations that fit (almost) all outcome metrics 

differed substantially between the six model types. In all three ROIs, global and 

local gain modulations showed the most robust fit across different parameter 

value combinations, fitting a maximal number of eight outcome metrics in V1 with 

93% and 86% parameterizations respectively, compared to 13% for the next best 

model type, local tuning. Similar results were evident in LOC, with the sign of seven 

metrics successfully fit by global gain modulations in 82% of parameterizations and 

77% of local gain modulations, while local tuning did so only in 42% of parameter 

combinations. In TOFC, global gain modulations fit seven outcome metrics in 93% 

and local gain modulations in 81% of parameterizations, compared to local tuning 

with 51%. In short, these results suggest that global and local gain modulations are 

less sensitive to the exact parameter values in producing the observed fMRI results. 

This robustness in turn increases the probability of these two model types reliably 

explaining the observed empirical results. That said, there is a substantial number 

of parameter combinations under which competing models do reliably produce the 

observed fMRI results as well. Moreover, a slope of the same sign does not necessarily 

accurately describe how well the simulated results fit the empirical results, as slope 

coefficients can differ drastically. Therefore, a more fine grained, quantitative 

approach is necessary to evaluate the model fit.
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FIGURE 4.4  Qualitative assessment of model fits. 

Displayed are the percentages of parameterizations for each model type that fit all (8 sign 
fits), or all but one (7 sign fits) of the empirical fMRI outcomes. In V1 (left), all model types 
fit all eight outcome metrics under at least one parameterization. Note: due to a very small 
percentage of fits, the 8 and 7 sign fits are barely visible for some models (e.g., remote tuning 
in V1). The percentage of good fits is noticeably larger for global and local gain modulations 
compared to all other model types. A similar, albeit smaller difference is also evident in LOC 
(middle) and TOFC (right), with a larger proportion of parameter combinations showing a fit 
to the sign of slopes for global and local gain modulation models. Worse fits, that is model 
parameterizations with less than seven outcome metric fits, are not displayed.

Perceptual expectations are best explained by a local gain modulation 

Next, we quantitatively analyzed the fit of the simulated to the empirical results 

by calculating the mean squared error (MSE) for each model type and parameter 

combination. In brief, we compared the relative slope of the simulated and empirical 

results for each outcomes metric. This difference in slopes was squared and the 

average per model type and parameter combination calculated. Thus, this MSE 

reflects how well each parameterization of each model types fits the empirical fMRI 

results. Results, depicted in Figure 4.5, show that in all three ROIs, V1, LOC and TOFC, 

the best fitting model type (lowest MSE) was local gain modulation (solid orange 

line). In fact, in LOC and TOFC, several parameterizations of the local gain modulation 

outperformed all other model types by a substantial margin. This suggests that the 

superior performance of local gain modulation is stable (i.e., not driven by noise) 

and robust to changes in the exact parameter values. Moreover, the mean MSE of 

the best 100 parameterizations (squares in Figure 4.5) of the local gain modulation 

model was lower than the mean MSE of all other model types. In sum, in intermediate 

and higher visual areas, LOC and TOFC, local gain modulations best explained the 

empirical results. In V1 results were less clear, with the global gain modulation 

model performing similar to local gain modulation. On average the 100 best global 

gain modulation models even outperformed local gain modulations, suggesting 

a broader, less specific gain suppression of neural responses in V1 compared to the 

local suppression in LOC and TOFC.
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Remote gain modulation models, by contrast, performed poorly in all three ROIs. The 

optimal parameterization of the remote gain modulation model performed worse 

than any of the 100 best parameterizations of the local gain modulation in V1 and 

LOC, and worse than the ~20 best parameterizations in TOFC, again demonstrating 

a robustness of the results to noise and changes in the exact parameter values. 

Generally speaking, local modulations outperformed global and remote modulations 

in all ROIs, for both model classes (gain modulation and tuning), with the exception 

of global gain modulations in V1. Similarly, gain modulations outperformed tuning 

models in all ROIs, across the three distance domains (local, global, remote). In 

sum, our results favor local gain modulations, in line with dampening accounts, as 

underlying perceptual expectation suppression across intermediate (LOC) and higher 

visual areas (TOFC), and global or local gain modulations in early visual cortex (V1).

FIGURE 4.5  Feature-specific local gain modulations best explain expectation suppression. 

Displayed are model fits in terms of mean squared error (MSE) in the three ROIs (V1, LOC, TOFC) 
for the six model types. Modeled were two model classes: gain modulations (red-orange lines) 
and tuning modulations (blue lines), across three distance domains: global (dashed lines), 
local (solid lines), remote (dotted lines). Local gain modulations, representing dampening 
accounts, reduce the gain of neural populations tuned towards the expected stimulus features. 
In both, LOC (middle panel) and TOFC (right panel), local gain modulations outperformed 
all competing models in terms of the lowest MSE, thus providing the best model fit. In fact, 
several parameterizations of the local gain modulation models outperformed the next best 
model, indicating a robust superior fit. Moreover, in LOC and TOFC, the mean performance 
of the best 100 local gain modulation model parameterizations outperformed the mean of 
the best 100 parameterizations of any other model type (squares on the right in each panel). 
Error bars indicate 95% confidence intervals. In V1, both local and global gain modulations 
performed similarly, with local gain modulations constituting the best model type in terms of 
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the lowest MSE, while the mean of the best 100 global gain modulation parameterizations was 
lower than for local gain modulations. In sum, local gain modulations performed better than 
all other model types in LOC and TOFC, while both global and local gain modulations perform 
well in V1, with evidence for more robust fits for global gain modulations models in V1.

Suppression is local in higher visual areas, and global in early visual cortex

In order to further explore the nature of local gain modulations, and the similar 

performance of local and global gain modulations in V1, we further investigated 

which parameter values resulted in the best model fits. Of particular interest were 

the a (suppression magnitude) and b (distance) parameter values for local gain 

modulations. To this end Figure 4.6, shows histograms of the parameter value 

distribution for the 100 best fitting global and local gain modulation models. 

The a parameter represents suppression magnitude; i.e., the multiplicative gain 

modulation that expectations induce. As can be seen in Figure 4.6A, the median a 

parameter of the best global gain modulation models was 0.8 in LOC and TOFC, and 

0.85 in V1. Similarly, for the best local gain modulation models the median a value 

was 0.75 in LOC, 0.67 in TOFC, and 0.85 in V1. Thus, on average (mean over ROIs and 

the two gain modulation models) the optimal a parameter value was approximately 

0.79, corresponding to a suppression of neural responses to approximately 79% of its 

unsuppressed response, if a stimulus was expected.

The b parameter determines, in non-global models, the influence of distance between 

stimulus and neural populations on the suppression magnitude. Small b parameter 

values are associated with localized feature-specific suppression, affecting only 

neural populations with similar response preferences. Large b values on the other 

hand, correspond to global suppression, with local and remote models being identical 

to global models when b = ∞, implying that all neural populations are affected equally, 

irrespective of their tuning. In order to distinguish global from local/remote models, 

we limited the b parameter grid to b <= 2.3 (i.e., approximately ¾ π; feature space 

spanned 0 to π. Thus, b = 2.3 constitutes a fairly broad, but not global, suppression 

profile; for an illustration and more details see: Materials and Methods, Simulation, 

Modulation by expectations and Parameter grid). As evident in Figure 4.6B, in LOC and 

TOFC, the median b parameter of the 100 best fitting local gain modulation models 

was b = 1.0 and 0.9 respectively, suggesting a localized gain modulation of neural 

responses. In contrast, in V1 the median b parameter was 1.65, in a distribution of well-

fitting b values noticeably skewed towards large values. Statistical tests confirmed 

that the distribution of b values was indeed significantly higher in V1 compared to 

LOC (W = 3667, p = 9.6e-7) and TOFC (W = 4066, p = 3.2e-11). In other words, local gain 

modulation models that did perform well in V1, were predominantly showing a wide-

spread (i.e., fairly global) suppression of neural populations, compared to the more 
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localized suppression in LOC and TOFC. These results support a similar conclusion 

as those depicted in Figure 4.5, which showed that global and local gain modulation 

models performed similarly well in V1, while global gain modulations were clearly 

inferior to the feature-specific local gain modulations in LOC and TOFC. 

 

FIGURE 4.6  Gain modulations are local in LOC and TOFC, and global in V1. 

Histograms of parameter values associated with the 100 best models for global (red) and local 
(orange) gain modulations in V1 (left), LOC (middle), and TOFC (right). Black dashed vertical 
lines indicate the median of the distribution. (A) Shows the count of specific a parameter 
values among the 100 best models. The a parameter reflects the magnitude of suppression. 
On average, an a parameter value of approximately 0.79 best fit results across both gain 
modulation models and all three ROIs, suggesting that response rates of neurons are reduced 
to ~79% of their unsuppressed response by perceptual expectations – albeit values differ 
somewhat between ROIs for local gain modulations. (B) Shows histograms of b parameter 
values of the 100 best local gain modulation models. Amongst the best models are larger b 
parameter values in V1 (right skewed distribution; median = 1.65), and smaller b values in LOC 
and TOFC (left skewed distributions with a smaller median LOC = 1.0 and TOFC = 0.9). The 
b parameter controls the effect of distance, with small b parameters being associated with 
localized suppression effects, while large b parameters reflect more wide-spread, and less 
feature-specific suppression. Thus, successful gain modulation models in LOC and TOFC tend 
to modulate neural responses in a localized feature-specific fashion, compared to a rather 
global modulation in V1. See Materials and Methods, Simulation, Modulation by expectations 
and Parameter grid for an illustration of the b parameter value range.
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In sum, expectation suppression in higher visual areas appears to be a feature-specific 

local gain modulation, in support of dampening accounts. In contrast, a more global, 

feature-unspecific gain modulation seems to underlie expectation suppression in 

early visual cortex. Initially it may appear surprising that a simple suppression model, 

such as a global gain modulation, should account for the observed results in V1, as it 

is not in line with either sharpening or dampening. However, these results do in fact 

supplement earlier observations that reported stimulus-unspecific suppression in 

early visual cortex [145].

Discussion

Predictions, based on statistical regularities in the sensory input, can be useful in 

guiding perception. In particular, predictions may aid to represent the world in a 

veridical fashion, as well as promote processing of novel and surprising information 

[44]. In the present study we investigated the neural mechanism underlying a widely 

reported neural signature of perceptual predictions, expectation suppression: 

the attenuation of responses to expected compared to unexpected stimuli (for a 

review see: [19]). On the one hand, population sharpening suggest that expectations 

sharpen sensory representations in line with expectations, by suppressing neurons 

tuned away from the expected stimulus [18,41,142]; modeled here as a remote gain 

modulation. On the other hand, the dampening (or cancellation) account proposes 

that expectations dampen sensory representations, by suppressing neurons tuned 

towards the expected stimulus [23,43,79,113,143]; modeled as a local gain modulation. 

We tried to arbitrate between population sharpening and dampening accounts of 

perceptual expectations by employing forward models and a large range of fMRI 

outcome metrics previously used by empirical studies investigating expectation 

suppression [18,43,113,142,143]. Our approach comprised two steps: first, we established the 

effects of expectations in terms of these outcome metrics for three ROIs, throughout 

the ventral visual stream, based on a large (n = 56) combined analysis of fMRI data from 

two prior studies [113,145]. Next, we used forward models to quantitatively assess which 

underlying neural mechanism could best explain the observed effects of expectations. 

As neural mechanism we modeled the two accounts of interest, sharpening and 

dampening, as well as alternative models based on the wider literature. In brief, we 

show that perceptual expectations in the ventral visual stream are best explained by a 

feature-specific local gain modulation, in line with dampening. These results suggest 

that expectations, as investigated here, selectively suppress neurons tuned towards 

expected stimulus features, and may thereby serve to reduce information redundancy 

in sensory areas and highlight surprising, and novel information.
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No qualitative pattern of fMRI results is necessarily unique to 
sharpening or dampening

First, we demonstrated that all model types, both gain modulation and tuning 

models, across all three distance domains, could fit the empirical fMRI results on 

(almost) all fMRI outcome metrics. The utilized fMRI outcome metrics have been 

employed by previous studies to arbitrate between different accounts underlying 

expectation suppression [18,43,113,142,143]. In V1, all model types could, under at least 

one parameter combination, qualitatively fit all fMRI outcomes; i.e., the sign of the 

slope of the outcome metrics. Similar results were evident in higher visual areas, 

LOC and TOFC, with all model types matching the sign of at least seven of the eight 

metrics. Dampening and sharpening accounts make opposite predictions in terms of 

the neuronal population that is most suppressed by expectations. Thus, it is counter-

intuitive that opposite neural-level modulations can qualitatively fit the same 

voxel-level results on a broad range of analyses, even under biologically inspired 

constraints (see: Materials and Methods, Simulation, Response requirements). These 

results highlight a crucial limitation of relying on heuristics in the interpretation of 

fMRI results, particularly if a limited number of fMRI analyses are utilized, echoing 

conclusions drawn by Alink et al. [105]. 

However, in contrast to Alink et al. [105], our results also show that relying on a purely 

qualitative interpretation of the results is not sufficient to reliably distinguish 

between population sharpening and dampening accounts, even if a combination 

of several fMRI outcome metrics is used. Indeed, all models could qualitatively 

fit the empirical results in V1, and a similar pattern was evident in LOC and TOFC. 

The additional flexibility of the models in our simulation is likely a consequence 

of modelling stimuli across the entire feature space, instead of only two specific 

feature values [105]. Moreover, a substantially finer resolution and broader scope of the 

explored parameter grid contributed to additional model flexibility, even though we 

also enforced additional response constraints based on plausible neural responses 

(see: Materials and Methods, Simulation, Response requirements). This versatility 

necessitates a more fine-grained, quantitative analysis of the model fits. 

Perceptual expectations dampen sensory representations

In higher visual areas, LOC and TOFC, local gain modulation models outperformed 

all other implemented models. In fact, not just the best performing model (smallest 

MSE) was local gain modulation in both ROIs, but this superior fit to the empirical 

data was stable and robust to variations in the precise parameter values of the 

model; i.e., several local gain modulation models fit the empirical data better than 
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any other model. Moreover, the average MSE of the 100 best local gain modulation 

models was lower than the average MSE of the 100 best models of any other type in 

both LOC and TOFC, further supporting that local gain modulations best explain 

expectation suppression. Thus, our results, across intermediate and higher visual 

areas in humans, converge on a similar neural mechanism as underlying expectation 

suppression as previously proposed based on electrophysiological recordings in 

non-human primates [23,79]. Interestingly, previous work also shows that local gain 

modulations underlie stimulus adaptation as well [105], thus suggesting comparable 

neural modulation accounting for both phenomena, adaptation and expectation 

suppression. Similar neural modulation should however not be mistaken as an 

identity of the two phenomena [22,62,110].

Having established that local gain modulations underlie expectation suppression in 

the ventral visual stream, it is worth considering what functional role expectations 

may have in perception according to the dampening account. The hallmark of 

dampening (here modeled as local gain modulation) is a suppression of responses 

in neural populations tuned towards the expected stimulus features [23,43,113,143]. By 

suppressing neurons tuned towards the expected stimuli, a dampening of neural 

responses reduces redundancy in the sensory system. That is, if a stimulus was well 

predicted by internal models, there is no need to vigorously respond to that stimulus, 

as it presents little new information. Indeed, information is particularly relevant to 

an agent, in so far as it is novel information, because such information is valuable for 

updating internal models of the world, which in turn can promote adaptive behavior. 

Moreover, suppressing uninformative, well predicted input, may additionally 

preserve processing and attentional resources. Therefore, it seems adaptive that 

expectations can guide perception by suppressing expected input and highlighting 

unexpected stimuli; i.e., events that are informative.

Reconciling sharpening and dampening accounts

As discussed above, the present results support the dampening account of expectation 

suppression, with expectations highlighting novel information, and deemphasizing 

expected, predictable input. These results may appear incompatible with the 

competing population sharpening account, which, in line with Bayesian views 

of perception [5,6], suggests that predictions sharpen representations in line with 

expectations. Indeed, our implementation of sharpening, remote gain modulation, 

performed poorly in all three ROIs. However, there are attempts to reconcile these 

seemingly incompatible accounts. For instance, hierarchical predictive coding 

theory proposes that sharpening and dampening occur in parallel but in different 

neural populations – namely, prediction and error neurons, which would reside in 
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superficial and deep layers of cortex, respectively [12]. Note, however, that so far there 

has been no direct evidence for the existence of these two neuron types, and that this 

proposal does not explain why the present results would only reflect the dampening 

process occurring in the error neurons. 

Alternatively, Press et al. [44] recently proposed that both processes, population 

sharpening and dampening, operate during different processing stages. The rationale 

is that initial processing relies on prior knowledge to sharpen sensory representations, 

followed by a late processing stage, dampening neural representations of the 

expected stimulus. Thereby, this account promises to unify results in the literature 

that initially appear incompatible (e.g., [18,41,142] vs. [23,43,79,113,143]). At the same time 

this proposal also acknowledges the adaptive value of predictions in fulfilling both 

challenges facing perception, veridical representations aided by prior knowledge, as 

well as using prior knowledge to reduce redundancy and help in information seeking 

and updating of internal models. 

That said, the present results only provide evidence in line with the hypothesized 

late dampening stage. However, given that in the analyzed fMRI datasets (for details 

see: [113] and [145]) object stimuli were presented at full contrast, without visual 

noise, and for a fairly long duration (500 ms), it is conceivable that in this context 

a representational sharpening stage is of little relevance for veridical perception 

and good task performance. Consequently, the sharpening processing stage may 

have had little impact on the overall BOLD signal, which represents (indirectly) the 

integrated neural response over an extended time period. Thus, in the present data, 

the later representational dampening stage may have dominated the observed BOLD 

signal. On the other hand, in Kok et al. [18], participants performed a more perceptually 

demanding discrimination task, which may have placed emphasis on the sharpening 

stage, thereby resulting in the observed suppression of neural populations tuned away 

from the expected stimulus. Future work is required to directly assess the two stage 

processing account, and whether the dominance of one or the other process can be 

tipped by task demands and stimulus characteristics; e.g., perceptually challenging 

paradigms resulting in a sharpening of representations, overruling the dampening 

effect in the BOLD signal.

Feature-unspecific suppression

While our results in higher visual areas support the dampening account, results in V1 

do not so readily fit this interpretation. In fact, results in V1 suggest that perceptual 

expectation may suppress neural responses in a largely feature-unspecific fashion, 

with both global and local gain modulation models performing well. Amongst the 
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best performing local gain modulation models in V1, broader suppression profiles 

(larger b parameter values) were evident than in LOC and TOFC. In other words, 

well performing local gain modulations models in V1 were more global in their 

suppression, affecting neural populations across different feature tunings. Moreover, 

in contrast to higher visual areas, on average the best global gain modulation models 

outperformed all other model types, including local gain modulations, in V1. These 

results may initially seem surprising, given that neither of the outlined accounts, 

dampening or sharpening, predicted this pattern of results. However, we previously 

suggested that expectation suppression in V1 may indeed be feature-unspecific [145]. 

In particular, we showed that voxels in V1, but not in LOC and TOFC, which were not 

significantly activated by the stimuli showed comparable amounts of expectation 

suppression to stimulus-driven voxels [145]. Combined with the present results, it 

appears that perceptual expectations, following statistical learning of object pairs, 

may result in feature-unspecific suppression of neural responses in early visual 

cortex, affecting neurons irrespective of their feature tuning.

Given that the here investigated expectations concern object identity predictions, it 

is intriguing to note that only object selective visual areas (LOC and TOFC) yielded 

feature-specific suppression, while early visual areas did not. Thus, it is plausible 

that only cortical areas whose response properties are particularly diagnostic of an 

expectation confirmation/violation show feature-specific expectation suppression, 

while lower visual areas, in this case V1, inherit an unspecific feedback signal from 

higher visual areas. This interpretation of the feature-specificity of perceptual 

expectations depending on stimulus characteristics and neural tuning properties, 

is further supported by noting that Kok et al. [18] presented oriented grating stimuli 

and accordingly observed representational sharpening in early visual cortex; i.e., the 

visual area particularly selective for stimulus orientation predictions. Thus, feature-

specific perceptual expectation may manifest in the cortical areas tuned for features 

particularly diagnostic of an expectation violation or confirmation, while lower 

sensory areas in turn may only inherit unspecific surprise signals during subsequent 

feedback.

Limitations

The present results have to be interpreted with some limitations in mind. First, 

while we synthesized empirical fMRI data from two separate studies, resulting in 

a large dataset (n = 56) including separate tasks, it is crucial to consider the type of 

perceptual expectations investigated in these datasets. In particular, both studies 

probed visual expectations extracted incidentally from statistical regularities. Thus, 

it remains unclear whether the perceptual expectations studied here, following 
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incidental statistical learning, involve similar neural mechanisms and consequences 

as explicitly learned expectations. It is possible that different routes towards the 

acquisition of statistical regularities exist, relying on different neural mechanisms 

[47], thus raising the question whether the resulting sensory consequences may also 

differ.

The implemented forward models necessarily involve an oversimplification of 

the neural mechanisms and responses in visual cortex. For example, we relied on 

limited random sampling of neurons to form voxels with different response profiles, 

mirroring the large scale response preferences evident in empirical fMRI data. While 

our approach is in line with biased sampling [150] and macroscale maps [151], two 

leading accounts of voxel selectivity, there certainly are more refined and biologically 

plausible implementations. Additionally, we chose to bypass the complex dynamics 

involved in the hemodynamics underlying the BOLD signal, which constitutes a 

significant oversimplification. Moreover, alternative theories of stimulus selectivity 

may not be in agreement with our model (e.g., stimulus vignetting [152]), and thus 

our results cannot speak for such mechanisms. That said, the primary assumptions 

of our implementation appear fairly robust; i.e., a monotonic relationship between 

neural activity and voxel responses, and that voxel-level response preferences 

indirectly reflect neural tunings. Therefore, even though our model constitutes an 

oversimplification of the associated neural and hemodynamic processes, if these 

two core assumptions hold, our results are nonetheless likely to be informative about 

how expectations modulate neural responses.

Another limitation worth considering are the utilized feature space models. 

There is ample room to improve the feature space definitions with more complex 

implementations, and thereby increase the amount of explained variance. This may 

in turn help in yet more clearly distinguishing between the different predictions of 

the neural mechanism underlying expectation suppression. That said, we did show 

that even our simple custom feature spaces reliably capture neural response variance 

in their target ROIs, and are sufficient to yield distinguishable characteristics between 

population sharpening and dampening accounts.

By casting a broad parameter grid, and assessing results according to a variety of 

parameter combinations, instead of only the best fitting parameterization per 

model, we demonstrate the stability and robustness of our results to noise and 

changes in parameter tuning. This in turn also increases the robustness of the drawn 

conclusions. By inspecting well-fitting parameter values, such as the magnitude 

of suppression (a parameter) among the best performing local and global gain 

modulation models, we noted that the average suppressed response is approximately 
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79% of the unmodulated response. Interestingly, this number well matches the 

magnitude of expectation suppression reported by Kaposvari et al. (Figure 6A/B  in 

[26]) in terms of multi-unit firing rates recorded in monkey IT. While no formal link 

can be established, this convergence in suppression magnitudes between simulation 

and electrophysiological recordings provides additional confidence in the validity of 

the present simulation results.

Finally, the present results should not be seen in isolation. Using a novel approach 

in the investigation of expectation suppression, moving from neural-level models 

to voxel-level data, we converge on a similar conclusion as previous studies using a 

variety of other analyses and recording methods [23,43,79,113,143]. Combined these results 

provide robust evidence in favor of the dampening account.

Conclusion

In sum, we show that, in intermediate and higher visual areas, perceptual expectations, 

following statistical learning of associations between object images, result in a 

feature-specific suppression of neural responses. This feature-specific suppression 

is particularly affecting neurons tuned towards the expected stimulus features. As a 

result this suppression dampens neural representations of expected stimuli, thereby 

potentially reducing redundancy in sensory cortex and emphasizing processing of 

surprising, novel information. Additionally, feature-unspecific suppression occurs 

in lower visual areas, such as V1, possibly as a consequence of unspecific feedback 

from higher visual areas. Whether feature-specificity depends on the type of predicted 

stimuli remains to be investigated. Moreover, whether the here supported dampening 

can operate in concert with a sharpening of representations during different stages of 

visual processing [44] poses an intriguing avenue for future research.

Materials and Methods

Empirical fMRI data

This section briefly describes the experimental protocol of the two fMRI datasets; for 

a full description see: Richter and de Lange [145] and Richter et al. [113].

Experimental paradigm

In both experiments, participants (n = 34 and n = 22 after data exclusion) were 

presented with two full-color object images in quick succession. Each image was 
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presented for 500ms, without interstimulus interval, and an intertrial interval of 

approximately five seconds; Figure 4.7A depicts a single trial. Crucially, the identity 

of the trailing (second) image was predictable given the identity of the leading (first) 

image. Thus, each trailing image could either be expected or unexpected given the 

leading image. In Richter and de Lange [145], the transition matrix during a learning 

session consisted of 12 leading and 12 trailing images with deterministic associations 

(i.e., only expected pairs) on a total of 960 trials. During fMRI scanning, a subset of 

six by six images was shown using probabilistic associations (50% reliability; i.e., the 

expected image was five times more likely than any unexpected image; Figure 4.7B, 

left panel) on a total of 240 trials. Transitions were task-irrelevant during the learning 

session (unpredictable oddball detection), but could aid task performance during 

fMRI scanning (classification of trailing images). In Richter et al. [113], eight leading 

and eight trailing images were shown (Figure 4.7B, right panel). During the learning 

session (2,012 trials; 100% reliability) as well as during fMRI scanning (512 trials; ~56% 

reliability) statistical learning was incidental; i.e., the statistical regularities were not 

related to, or helpful in performing the task (unpredictable oddball detection). Only 

non-oddball trials (456 trials), without any behavioral responses, were analyzed. 

Additionally, both studies had one localizer run during which stimuli were presented 

in an expectation neural context for ~12 seconds, one at a time, flashing at 2 Hz.

 FIGURE 4.7  Experimental paradigm and image transition matrix. 

(A) Depicts a single trial. A leading image (500ms) is followed by a trailing image (500ms), 
the identity of which is (un-)expected given the leading image. The trials end with an ITI of 
~5000ms. (B) Shows the image transition matrices determining the association between 
images. Expected image pairs are denoted in blue. Each trailing image occurs as expected and 
unexpected image, with expectation status depending only on the leading image on a given 
trial. The transition matrix on the left is from the experiment reported in Richter and de Lange 
[145], while the matrix on the right is from Richter et al. [113].
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to acquire functional MRI data. Data from Richter and de Lange [145] was acquired 

using a multiband 6 sequence with 2mm isotropic voxel size, and data from Richter 

et al. [113] with a multiband 8 sequence with 2.4mm isotropic voxel size. T1-weighted 

images were acquired in both studies using a magnetization prepared rapid gradient 

echo sequence (MP-RAGE) sequence with 1mm voxel size.

fMRI data preprocessing

Preprocessing of the empirical fMRI data was performed using FSL 6.0 (FMRIB 

Software Library; Oxford, UK; www.fmrib.ox.ac.uk/fsl; [87]; RRID:SCR_002823). 

The preprocessing pipeline included: brain extraction (BET), motion correction 

(MCFLIRT), and temporal high-pass filtering (128 s). No spatial smoothing was 

applied, as voxel patterns were of primary interest. Functional images were aligned to 

the middle volume of the localizer run. All analyses were performed in native space in 

order to avoid unnecessary data interpolation.

fMRI data preparation

The preprocessed fMRI data was further analyzed using the least squares separate 

approach by Mumford et al. [89] and Turner et al. [153]. A separate GLM was fit for each 

trial, consisting of one regressor of interest, modelling the response to the stimuli 

on the current trial. Additionally, regressors of no interest were added, consisting 

of a regressor per trailing image type (excluding the current trial), one regressor 

modelling events of no interest (instruction events), and 24 motion regressors (FSL’s 

standard + extended set of motion parameters). Regressors were convolved with a 

standard double-gamma HRF. Finally, the parameter estimates for each trial and ROI 

were extracted separately, which constitute the pattern of responses to the stimuli 

presented on each trial.

Region of interest masks

The same region of interest (ROI) masks were used as described in Richter and de 

Lange [145] and Richter et al. [113]. In brief, three ROIs were defined a priori: primary 

visual cortex (V1), object selective lateral occipital complex (LOC), and temporal 

occipital fusiform cortex (TOFC; akin to inferior temporal cortex). All three ROIs were 

defined anatomically and functionally. Moreover, ROI masks were further constraint 

to the 200 (data from [113]) or 300 (data from [145]) most informative voxels for decoding 

object identity using independent localizer data. Thus, the ROIs represent stimulus 

responsive voxels, across three different levels of the ventral visual stream. All 

three levels of the hierarchy were considered interesting, as it was not clear whether 



CHAPTER 4

116

expectations may modulate responses in similar or distinct ways across the visual 

hierarchy.

fMRI outcome metrics

The empirical and the simulated fMRI data were analyzed using the same analysis 

pipeline. In total, eight different outcome metrics were assessed. The reasoning for 

relying on this large number of diverse outcome metrics is based on Alink et al. [105], 

showing that, in the context of stimulus adaptation, neural models can show great 

flexibility in fitting empirical fMRI results, and that only by combining a range of 

outcome metrics one can successfully distinguish between the best performing 

models. We modified and extended the set of outcome metrics, resulting in the 

analyses summarized below. The utilized outcome metrics are based on previous 

studies investigating the neural mechanism underlying expectation suppression, 

building on a diverse set of studies supporting sharpening and dampening accounts.

Mean amplitude modulation (MAM)

MAM probes the univariate differences in response amplitude between expected and 

unexpected stimuli. Thus, this metric indexes the commonly reported expectation 

suppression effect [18,25,43,106,113,142,145].

Within-class correlation (WC)

WC assesses the correlation of neural patterns between different presentation 

instances of the same object stimulus, and potential difference in the size of this 

correlation between expected and unexpected occurrences of the stimuli. Thus, a 

large WC coefficient indicates that the same stimulus, presented on different trials, is 

represented in a similar fashion.

Between-class correlation (BC)

Similar to WC, BC measures the correlation in neural responses. BC concerns the 

correlation in representations between different object stimuli. A low BC thus 

indicates that different stimuli elicit dissimilar response patterns. Parameter 

estimates are z-scored before WC and BC calculation. The two correlational metrics 

(WC, BC) are similar to representational analyses used by Blank and Davis [43].
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Classification performance (CP)

CP is defined as the difference between WC-BC, similar to the classification approach 

originally outlined in Haxby et al. [154]. A higher CP thus indicates that object 

representations are more distinct.

Support vector machine classification (SVM)

SVM is defined as the decoding accuracy using linear SVMs. Object identity was 

decoded after SVMs were trained on independent localizer data. While different in 

the underlying method, the interpretation of SVM is similar to CP, in that a higher 

classification accuracy indicates more distinct neural representations. As above, data 

was z-scored. The classification metrics (CP, SMV) are akin to analyses used by Kok et 

al. [18], Yon et al. [142] and Han et al. [143].

Amplitude modulation by amplitude (AMA)

AMA concerns the magnitude of the amplitude modulation (i.e., expectation 

suppression = responseunexpected - responseexpected) as a function of mean voxel 

amplitude. In other words, it expresses whether the amount of expectation 

suppression increases (or decreases) as a function of the average responsiveness of 

a voxel within an ROI. This metric thereby indexes whether expectation suppression 

scales with general responsiveness. Data was binned into 10 equally sized bins. The 

responsiveness ranking was established on independent localizer data. This analysis 

is based on Alink et al. [105].

Amplitude modulation by selectivity (AMS)

AMS, similar to AMA, also expresses the magnitude of expectation suppression, but 

as a function of voxel selectivity. Selectivity is established based on independent 

localizer data, by fitting a GLM to each voxel’s response regressed onto the response 

amplitude ranked images. Thus, a highly selective voxel responds strongly to some 

images and weakly to others, while a low selectivity voxel responds similarly to all 

images. AMS thereby assesses whether the response selectivity of a voxel correlates 

with the amount of expectation suppression experienced by that voxel. Note: the ROI 

masks contain the most informative voxels concerning object identity decoding (see 

Region of interest masks). Thus, all voxels in the ROI are (likely to be) stimulus driven. 

The AMS metric is based on Richter et al. [113] and Alink et al. [105].
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Image preference (IP)

IP indexes the amount of expectation suppression within each voxel as a function of 

image preference. Image preference is established based on localizer data, and ranks 

the response of a voxel to each trailing image by amplitude (i.e., image preference 

rank). Thus, IP expresses whether the magnitude of expectation suppression differs 

within a voxel depending on whether the displayed image is a preferred or non-

preferred stimulus for this voxel. The IP outcome metric is based on Richter et al. [113] 

and Kok et al. [18].

Feature space

For each ROI a feature space was defined on a neural response theoretical basis. V1 

neurons are thought to be orientation selective [33], and thus V1 feature space was 

defined by the predominant orientation of the stimulus. LOC has been shown to 

represent shape complexity [34], which formed the basis of the LOC feature space. TOFC 

represents complex visual features, which appear related along semantic categories 

[149], thereby suggesting a feature space representing semantic similarity. Thus, 

for each ROI a one dimensional feature space was constructed, along which each 

object stimulus could be expressed as a point in feature space. Finally, each feature 

space was validated using representational similarity analysis (RSA), performed on 

independent localizer fMRI data. In order for a feature space to be considered usable, 

it should account for a statistically significant amount of neural response variance in 

its designated ROI (see fMRI data analysis for feature space validation).

V1 feature space

For primary visual cortex, feature space was defined by the predominant orientation 

of each object stimulus. To this end Gabor filters of different frequencies (from 4/√2 

to the hypotenuse of the length of the input image; [155]) and orientations (in steps of 

20 degrees) were constructed, and the Gabor energy for each orientation extracted. 

Energy was averaged over the different frequencies and the orientation with maximal 

energy was used. This orientation thus represents the maximal orientation energy 

present in the object stimulus and thereby determined the positon of a stimulus in V1 

feature space. Figure S4.2 shows the arrangement of the object stimuli in orientation 

feature space. Given that orientation is circular, this feature space was modeled as 

circular (i.e., feature space ranged from 0 to π). The resolution of feature space was 

set to 180 * π.
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LOC feature space

For LOC, feature space was defined by shape complexity. Following Vernon et al. 

[34], we calculated several metrics describing the complexity of each object’s shape. 

These metrics included (1) the number of concavities, as well as (2) the area of these 

concavities, (3) the area and (4) perimeter of the smallest convex hull encompassing 

the object, and (5) the area of the smallest circle enclosing the object, as well as (6) the 

ratio of the silhouette of the object and the smallest circle. In brief, the number and 

area of the concavities describe shape complexity, because the number of concavities 

is directly related to the number of protrusions, which in turn is considered a metric 

for complexity (i.e., more complex shapes have more protrusions). Similarly, the area 

and perimeter of the smallest convex hull, encompassing the object, will be larger 

for complex objects with more protrusions. The area and ratio of the smallest circle 

encompassing the object relative to the silhouette indexes how compact an object 

is, with less compact (complex) objects yielding larger values. Because we aimed 

to describe feature space along one dimension for each ROI, the shape complexity 

metrics were subjected to a principle component analysis. Finally, the first principle 

component was extracted and used as the primary shape complexity descriptor. 

The arrangement of the stimuli in shape complexity feature space is depicted in 

Figure S4.3. As the shape complexity metric is arbitrary in its range relative to LOC 

responses (only relative positions and distances are interpretable), the same feature 

space resolution was used as for V1. However, LOC feature space was not circular, as 

the shape complexity dimension arranges objects from the most to the least complex 

(i.e., non-circular).

TOFC feature space

For TOFC, feature space was defined by semantic similarity. The central idea is that 

TOFC responses are related to complex visual feature, which are correlated along 

semantic categories [149]. We used a multiple-arrangement task [156], in which a separate 

sample of participants (n = 32; 16 females; age 26.9 ± 8.5 years) arranged object stimuli 

in an arena by their semantic similarity. This behavioral study, like the MRI studies, 

followed institutional guidelines of the local ethics committee (CMO region Arnhem-

Nijmegen, The Netherlands; METC no. 2014-288), including informed consent. 

Participants were instructed to arrange each object display by the similarity of the 

objects. It was emphasized that the arrangement should be made along semantic/

categorical similarities, and not by low level features. Distances between objects thus 

represent the semantic dissimilarity between each object pair. Sixteen participants 

arranged the object arrays that the fMRI participants in Richter et al. [113] were exposed 

to, while the other 16 participants arranged the objects shown to participants 
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in Richter et al. [145]. Each arrangement trial was the object matrix shown to one 

participant in the fMRI studies, thus constituting the context in which participants 

were exposed to the object stimuli, as semantic similarities are sensitive to context 

(e.g., cats and dogs are more similar to one another in a set of images also containing 

inanimate objects, but more dissimilar in a set comprised only of mammals). In 

addition, randomly sampled arrangements, as well as one arrangement of all object 

images in the database for each study, were appended until 75 minutes of experiment 

time passed. Finally, the individual representational dissimilarity matrices (RDMs) 

were collapsed by averaging, thus resulting in one RDM for the stimulus set of each 

fMRI experiment, which describe the human-rated, semantic dissimilarity (distance) 

of each object to each other object. Finally, multidimensional-scaling was used to 

extract a single dimension to describe the position of each object along the semantic 

similarity feature space. Figure S4.4 depicts the object stimuli arranged along the 

subjective similarity feature space. The precise values of this TOFC feature space are 

arbitrary, and only relative positions are meaningful. As with LOC, the feature space 

was non-circular.

fMRI data analysis for feature space validation

Each participant’s localizer run was analyzed in an event-related approach using FSL 

FEAT, modeling each object stimulus as a regressor of interest. Twenty-four motion 

regressors (FSL’s standard + extended set of motion parameters), as well as other 

regressors of no interest (instruction screen) were added to the model. The contrasts 

of interest were the parameter estimate maps representing the responses to each 

object image compared to baseline (no visual stimulation). These contrast parameter 

estimates were extracted for each ROI and used to validate the three above described 

feature spaces.

In order to validate the feature space for each ROI, we performed RSA. In brief, for 

each participant of the MRI experiments, the positions in feature space of the objects 

shown to that participants were determined using the above outlined feature space 

models. From these positions in feature space, a RDM was calculated describing 

the dissimilarity between each object pair in the relevant feature space; i.e., for V1 

distance in predominant orientation, for LOC distance in shape complexity, and 

for TOFC distance in semantic category. Next, the neural RDM was constructed by 

extracting the parameter estimates from the localizer run for each ROI separately (also 

see: Region of interest masks). The parameter estimates were z-scored and pairwise 

correlations between object representations were calculated. Thus, this RDM (1 – 

correlation) indexed the neural representational dissimilarity during the localizer 

run. Finally, we correlated the neural and feature space RDMs for each participant and 
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ROI using Spearman’s rank correlation. Thus, this correlation coefficient describes the 

correlation between the feature space RDM and the neural RDM for each participant 

and ROI. After Fisher z-transforming the obtained correlation coefficients, data was 

combined across participants by subjecting the obtained correlation coefficients to 

a two-sided, one-sample t-test, comparing the correlation coefficients against zero 

(i.e., no correlation). A significant, positive correlation would thus indicate that the 

constructed feature space does account for variance in the neural responses, which 

was considered a requirement for each feature space in its designated ROI.

Simulation

The following section first describes the simulation of neural responses and their 

modulation by expectations.  Next, we outline the sampling of neurons to voxels, 

as well as the estimation and addition of noise to the voxel responses. Finally, 

requirements imposed on simulated neural responses are described, as well as the 

analysis of model fits.

Neural responses

We modeled neural responses using neural response functions in ROI specific 

feature spaces. In the simplest case, a neural response was described as a Gaussian 

distribution with a mean in feature space and a standard deviation (σ). The full 

feature space was covered with eight neural response functions, each with a different 

mean, following the implementation of Alink et al. [105]. The maximal response of 

each neural population was normalized to one. Given that orientation feature space 

is circular, the circular normal (von Mieses) distribution was used for modelling V1 

responses. Figure 4.8 (left panel) shows an example for V1. As the veridical standard 

deviation (σ) is unknown, σ was a free parameter in the model.

Because non-circular feature spaces yield significantly lower summed responses at 

their extremes, due to a lack of overlap of response functions beyond the boundary 

of the feature space (see Figure 4.8, right panel), each non-circular feature space 

was clipped to the central region of feature space in which the summed response 

exceeded at least 95% of the maximal response. In other words, this criterion avoids 

that some stimuli elicit a significantly reduced response simply due to its position 

at the extremes of feature space, as there is no theoretical or bilogical reason why a 

stimulus at the end of, for example the semantic category feature space, should elicit 

lower responses in TOFC than a stimulus in the center of that feature space.
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FIGURE 4.8  Unsuppressed neural response functions. 

Depicted is an example set of unmodulated neural response functions (i.e., response to an 
unexpected stimulus). The left panel shows response functions covering a circular feature 
space (V1), while the right panel shows a non-circular feature space (LOC or TOFC). The thin 
black lines are individual response functions with different means along the feature space. 
Summed responses (normalized to one) are shown as the thick black line. The green line 
denotes an example stimulus. Blue lines show the clipping boundaries of the non-circular 
feature space – i.e., the region of feature space in which all stimuli are placed. The boundary is 
determined for each non-circular feature space by the minimal response criterion of 95% (see: 
Neural responses).

Modulation by expectations

Next, neural responses were modulated by expectations, if a trial contained an 

expected trailing image, thus implementing a modulation of the neural response 

following a top-down modulation. This modulation can for instance result after 

recurrent message passing, in line with predictive coding accounts, representing a 

more extensive resolution of prediction errors for expected input. We did consider, and 

ruled out, alternative model implementation in which expectations are instantiated 

irrespective of an expected stimulus being shown. However, only local (dampening) 

models could result in expectation suppression, the core phenomenon of interest, in 

these alternative implementation. Thus, these alternative implementations rule out 

remote (sharpening) and global models by design. For a more detailed discussion and 

illustration see supplemental Text S4.1 and Figure S4.1. In the present stimulation, 

the suppression of neural responses by expectations was modeled using two primary 

classes of modulations. Gain modulation models reduced the response of a neuron in 

a linear fashion. The magnitude of suppression was determined by a free parameter 

(a). In the simplest case, a was an unspecific multiplicative reduction; i.e., if a = 

0.7, the maximal response was reduced to 70% and all other responses were scaled 

proportionally in the global gain modulation model. On the other hand, tuning 

models modulated responses by reducing the width of the response functions. Thus, 

this modulation did not affect the maximal response of a neuron, but sharpened its 

response by making the responses more selective, with the a parameter determining 

the extend of this tuning modulation.
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	 Besides the two main model types (gain modulation and tuning), we also modeled 

three different distance functions. Distance functions determined where the effect of 

the response modulation occurred, relative to the expected stimulus in feature space. 

Global models affected the response functions equally across parameter space; i.e., 

global models do not have the parameter influencing the distance function. Local 

models exerted the modulation for neural populations close to the expected stimulus 

in feature space, and reduced in their modulation strength the further a neural 

population was tuned away from the expected stimulus in feature space. Remote 

models were opposite to local models, as they exerted the influence at the opposite 

side of feature space from the expected stimulus. A free parameter (b) influenced 

the distance over which the response modulation changed; i.e., large b parameter 

resulted in a broad influence across feature space. In fact, remote and local models 

are equivalent to global models if b = ∞. Figure 4.9 illustrates the effect different b 

parameter values have on suppression magnitudes across feature space.

The combination of two model types and three distance functions resulted in six 

models, which were used to describe response modulations by expectations. Thus, 

the response to an expected stimulus was the sum of the modulated response 

functions at the point in feature space of that expected stimulus. Figure 4.3B shows 

the six models in response to an example stimulus. 

 

FIGURE 4.9  Influence of the b parameter on suppression magnitude. 

Illustration of response suppression as a function of distance from an expected stimulus 
in feature space for different values of b. The dashed vertical lines indicate the position 
of an example stimulus in feature space. The example model is local gain modulation with 
a fixed a parameter value of a = 0.5 for illustration purposes. As the value for b increases 
(brighter colors), the broader the suppression profile becomes. For b = ∞ local/remote gain 
modulations are equal to global gain modulation. Grid search for b was limited to 0.1 >= 
b <= 2.3. Note the extreme locality of suppression for small b values. For example for b = 0.1 
neuronal populations tuned ~5 degrees away from the expected stimulus orientation would 
not experience any suppression. On the other extreme, for large b values, such as b = 2.3, local 
gain modulations would still substantially (suppression below 80% of responsiveness) affect 
neural populations tuned to exactly the opposite orientation of the expected stimulus (i.e., 90 
degrees away in V1 feature space).
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Model formulation

Model types:

Gain modulation: fi (j)=c(i,j)×g(xj; μi, s)

Tuning: fi (j)=g(xj; μi,c(i,j)×s)

Distance functions:

Global: c(i,j)=a

Local: c(i,j)=min(1, a+|
d(i,j)

| (1-a))

Remote: c(i,j)=max(a,1-|
d(i,j)

| (1-a))

Where,

fi (j) = activity of neural population i given stimulus j.

c(i,j) = suppression given stimulus j, neural population i, and applicable distance 

function.

xj = position of stimulus j in feature space.

μi = mean of neural population i in feature space.

s = width of response function (free parameter).

a = suppression magnitude parameter (free parameter).

b = distance parameter (free parameter).

d(i,j) = distance of stimulus j to the mean of the neural population i in feature space. 

Parameter grid

Given the above formulation, the present simulation has one free parameter 

determining the unmodulated response: the width of the neural response functions 

(σ). Furthermore, the modulated response functions contain two additional free 

parameters: the amount of suppression (a) and the effect of distance in feature space 

(b). A wide grid search was utilized to cover plausible parameter combinations (also 

see: Response requirements). The σ parameter value ranged from 0.1 to 6. Given the 

feature space width of π, these values represent a large range of σ values. Step size 

for σ was 0.1 from 0.1 to 1, 0.5 from 1.5 to 3, and 1 from 4 to 6. The a parameter was 

explored from a = 0.05 to 1, in steps of 0.05. An a parameter value of 0.05 corresponds 

to maximal suppression (e.g. for global gain modulation models this would result in 

a reduction of neural responses by 95% due to expectations), while a = 1 corresponds 

to no modulation by expectations. The final parameter, b, spanned values from b = 

0.1 to 2.3 (i.e., approximately ¾ π), in steps of 0.1. Small b values represent maximal 

locality of modulations, while for b = ∞ local/remote would be identical to global 

models. We limited b to 2.3 in order to properly distinguish global from non-global 

b

b
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models. However it should also be noted that b = 2.3 already represents a fairly global 

modulation, given that feature space ranges from 0 to π (see Figure 4.9). Combined, 

the three parameters resulted in a total grid size of 7820 parameter combinations, 

which were explored for each of the six model types. As a grid search was utilized, 

two concerns need to be addressed. One, the parameter grid must cover the whole 

parameter space of interest, that is, the explored grid needs to be broad enough and/or 

bounded by theoretical or mathematical reasons. Two, the step size of explored values 

must be sufficiently small to accurately sample the error landscape. We addressed 

both concerns by showing that the error landscape was smooth and contained 

the minima well within the explored bounds, which additionally were limited by 

theoretical considerations. Results and an additional discussion of the parameter 

ranges are presented in Figures S4.5, S4.6, S4.7 and S4.8.

Simulating voxels

Biased sampling [150] is arguably a leading account of how stimulus selectivity 

arises in fMRI voxel data. Simplified, the idea is that voxels pool over millions of 

neurons in a biased fashion, with different neural tunings being overrepresented in 

different voxels. Alternatively, global biases (maps) have been suggested to underlie 

the large scale response preferences evident in voxel-level data [151]. As in Alink et 

al. [105], we used a simple implementation in line with both macroscale maps and 

biased sampling, by random sampling a limited number of neurons with different 

feature tunings to form simulated voxels (eight per voxel). Spatial information was 

not modeled in the present simulation, as none of the ROI based analyses methods 

utilize spatial information beyond classical multivariate pattern analysis. The 

consequence of this limited random sampling procedure was simulated voxel-level 

data, which showed response preference for different stimuli. While this approach 

certainly constitutes a crude method for sampling neurons to form voxels, bypassing 

the complexities involved in the mapping of neural responses to BOLD signals 

(hemodynamics, etc.), it does succeed in creating voxels, which mirror the response 

profile seen in empirical fMRI data. In fact, the central assumptions of this approach 

are only that voxel-level selectivity reflects in an indirect manner neural tunings, 

and that there is some monotonic relationship between neural activity and voxel 

responses. In order to further improve the similarity of the simulated and empirical 

data, we created the same number of voxels as were analyzed in the empirical fMRI 

data, and added a customized amount of noise to the simulated voxels.
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Noise estimation

For each ROI and σ parameter combination, we added a custom amount of Gaussian 

noise to the voxel responses. The appropriate noise magnitude was determined by 

performing a separate SVM-based decoding analysis on the empirical localizer data 

and simulated localizer data. In brief, unmodulated neural responses to example 

stimuli were simulated and decoding was performed using linear SVMs. Iteratively 

more noise (noise parameter = 1 to 100 in steps of 1) was added to the simulation 

until the decoding performance of the simulated data was less than the decoding 

performance of the empirical fMRI data. Subsequently, the noise value yielding 

results closest to the empirical results was chosen as the noise level for the ROI and σ 

combination. This method ensures that no σ value is biased due to significant signal-

to-noise ratio (SNR) advantages. Moreover, estimating noise levels further increases 

the comparability of the simulated and empirical data, in particular in terms of SNR, 

and accounts for potential effects of ROI specific SNR levels on the observed results.

Response requirements

Given that the precise parameter values resulting in the most biologically plausible 

responses are unknown, we performed a broad grid search across parameter space. 

However, a broad grid search will inevitably result in some parameter combinations 

yielding implausible neural responses. The aim of the current study is to elucidate 

what type of neural modulation may underlie expectation suppression, and not to 

show the theoretical flexibility of unconstraint computational models. Thus, we 

enforced three biological plausibility criteria to the constructed neural responses 

spaces (NRS) that any parameter combination had to fulfill in order to be considered 

for the main simulation. 	

First, any unmodulated NRS had to cover the feature space reasonably well. This 

criterion rejects NRSs with too much variability or even ‘holes’ in its responses. An 

example of an excessively variable NRS is depicted in Figure 4.10A. Note that the 

unmodulated summed neural response (thick black line in Figure 4.10A) to some 

stimuli in feature space are drastically reduced compared to the response to other 

stimuli. In the case of V1, this would mean that neural responses to an oriented bar of 

e.g., 20 degrees would be more than twice as large as the maximum possible response 

to an oriented bar of ~30 degrees. Indeed, more extreme cases would even result in a 

de-facto blindness to certain feature values. While response biases on the population 

level certainly exist (e.g., in V1 to cardinal orientations; [157,158]), the variable response 

criterion enforced here does not concern the population (voxel) response, but the 

maximal response of any possible neuron to a particular feature value. Given that 
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neural responses, at least to the unmodulated stimuli, should be fairly uniform (i.e., 

there are at least some neurons that respond to a given stimulus in the relevant feature 

space), we rejected any unmodulated NRS that had a point in feature space to which 

the unmodulated summed response was less than 75% of the maximal response. This 

ensured a reasonably uniform responsiveness to unmodulated stimuli.

Second, a similar minimum response criterion was also enforced for modulated 

NRSs. However, this criterion was set to a more liberal threshold to allow for a larger 

modulation range. In particular, the threshold was set such that the modulated 

summed response to any point in feature space was at least 10% of the maximal 

summed response. This criterion avoids outright blindness (i.e., zero response) 

to expected features. To put the threshold of 10% in perspective, one can consider 

that the ratio of the maximal spiking rates of expectation-sensitive IT neurons 

(population average) compared to baseline (no visual stimulation) is approximately 

24%, as reported by Meyer and Olson [23]. In other words, we reject NRSs for which 

the expectation modulation was more than twice as strong as the response to visual 

stimulation compared to baseline in visually driven IT neurons. 

Third, neurons of any unmodulated NRS had to be sufficiently selective. This 

criterion rejects NRSs in which neural tuning is implausibly uniform, as depicted 

in Figure 4.10B. The rationale for this criterion is based on the notion that feature 

selective neurons were simulated, and that feature selective neurons ought not to 

respond (almost) equally to all features. In particular, we rejected any unmodulated 

NRS in which the response of a neuron is >75% of its maximal response ½ π away from 

its mean. In other words, this criterion precluded neurons which would respond 

maximally to an orientation of 0 degrees and still respond with >75% of its maximum 

to orientations of 90 degrees.

In total, these response requirement criteria resulted in the rejection of 3.2% of NRS 

in V1 and 42.2% in LOC and TOFC. Rejection numbers were noticeably larger in LOC 

and TOFC, because V1 feature space was circular, utilizing von Mieses distributions 

instead of Gaussian distributions in LOC and TOFC. Thereby, the number of NRS 

with too low responses for any feature space position for very small  values, or too 

unspecific responses for large  values in the unmodulated NRS, was significantly 

lower in V1 than LOC and TOFC. However, more important than differences in 

rejection percentages between ROIs were possible differences between model types 

within the same ROI. Differences between model types were relevant to consider, as 

radically different rejection percentages would result in some model types having 

more valid parameterization, and thereby a higher chance of fitting the empirical 

results simply due to a larger number of valid simulations. Reassuringly, differences 
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in rejection percentages between different model types were less than 10% between 

almost all model types in all three ROIs. Details are summarized in Table 4.1. Thus, 

each model type was sampled approximately equally often, with minor differences 

due to poor feature space coverage being slightly more prevalent in some model 

types (see rejection criteria above). In sum, the similar rejection rates imply that 

any potential differences in the performance of different model types are unlikely 

to be explained by differences in the number of sampled parameter combinations. 

Moreover, NRS rejections ensured that the obtained results are more likely to be 

meaningful, as the implemented rejection criteria support biological plausibility of 

the considered models.

 

FIGURE 4.10  Implausible responses. 

Shown are neural responses, which were considered biologically implausible, and 
thus rejected from the simulation. (A) Shows a neural response space for which the 
parameterization resulted in an implausibly high variability in the unmodulated neural 
response (thick black line). On this parameterization, the maximal unmodulated response 
to feature values would vary with more than 50%; e.g., the maximum possible responses of 
any neuron to a stimulus of 100 degrees orientation would be more than 50% larger than the 
response to a stimulus of 120 degrees. Any difference exceeding 75% in the unmodulated 
responses was deemed implausible. Note: this does not affect population difference due 
to an overrepresentation of neurons preferentially responding to specific features, but 
concerns the maximal possible response of any neurons type. The thick red line shows an 
implausibly low modulated response; i.e., the maximal response to this expected stimulus 
would be ~5% of the unmodulated response, which was considered biologically implausible, 
given that the approximate difference between maximal responsiveness and baseline (no 
visual stimulation) for expectation-sensitive, visually driven IT neurons is ~24% (see: [23]). 
(B) Depicts an example of an implausibly uniform neural response space. Thin lines indicate 
individual neural response functions, which are implausibly broadly tuned; i.e., the neurons 
are hardly selective for any feature, as their response exceeds 75% of their maximal response 
irrespective of the feature, which was deemed implausible.
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TABLE 4.1  Percentage of neural response space rejections.

Shown are the percentages of neural response space rejections for each model type and ROI. 
While there are large differences in rejection rates between circular (V1) and non-circular (LOC 
and TOFC) feature space ROIs, importantly within each ROI rejection rates between models 
are fairly similar (differences of usually <10%). This suggests that differences in the number 
of sampled parameter combinations are unlikely to account for differences in the observed 
results, as all model types are sampled approximately equally often.

ROI

Model types V1 LOC & TOFC

Global gain modulation 10.0% 41.8%

Local gain modulation 0.2% 35.5%

Remote gain modulation 2.0% 39.0%

Global tuning 4.1% 46.8%

Local tuning 0.7% 38.5%

Remote tuning 2.4% 45.9%

 
Simulation procedure

After establishing the model formulation and creating voxels per simulated 

participant, we proceeded to present object stimuli to the simulated voxels. In fact, we 

simulated the presentation of the same stimuli, on the same number of trials as was 

used in the empirical data collection. In other words, each participant of the empirical 

fMRI data was simulated with the original trial matrix. We simulated each participant 

50 times to ensure that results were not driven by noise, resulting in a total of n = 2800 

simulated participants. In total 909,600 trials were simulated for each model type 

and parameter combination. Additionally, we also simulated localizer data by adding 

½ of the estimated noise level, thereby mimicking the higher SNR afforded by the 

localizer run’s design, again using the same number of simulated localizer trials as 

in the empirical localizer data. Finally, the simulated fMRI responses were analyzed 

using the same analyses as for the empirical fMRI data (see fMRI outcome metrics).

Model comparison

The central question in the present study concerns which type of neural modulation 

best explains the empirical results. Frequently in fMRI studies statistically significant 

outcome metrics are interpreted in a binary fashion; i.e., either the effect reduces or 

increases the response. Mimicking this binary approach, we first analyzed our data 

by comparing the sign of simulated outcome metrics with the empirical results. 

Thus, in this analysis a model either can or cannot account for a particular outcome 
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metric. By summing the number of matching slopes we can determine how many 

outcome metrics each model can account for. Additionally, we assessed how robust 

the results are to changes in the precise parameterization; i.e., how many different 

parameterizations of each model could explain a large number of outcome metrics. 

To this end, we calculated for each model type the percentage of valid model 

parameterization (i.e., parameter combinations that fulfilled the criteria listed in: 

Response requirements) that resulted in the maximal number of matching signs of 

slopes. This metric thus gives an indication not only how well each model type can 

account for the sign of the slopes under one ideal parameterization, but how robust 

the result is to changes in the parameter values, with more robust models being 

preferable.

Besides this binary approach, we also performed a more fine-grained quantitative 

analysis of the model fit. In particular, we calculated the mean squared error (MSE) 

for each model type and parameter combination. We first calculated the normalized 

slope for each outcome metric and model parameterization. A normalization step 

was necessary, because the empirical and simulated data, depending on the outcome 

metric, encompass different numerical ranges. Normalization was done by rescaling 

to the unexpected condition’s value per outcome metric (for MAM, WC, BC, CP, SVM) 

or to the maximal suppression value (for AMA, AMS, IP). The slope for each outcome 

metric was calculated on these normalized values, thus resulting in relative, and 

thereby comparable, expectation effect slopes for each outcome metric. Thus, for 

example for MAM the resulting slope coefficient would represent the expectation 

suppression magnitude relative to unmodulated (unexpected) responses. We then 

compared these slopes for each simulated result (i.e., model type and grid point 

combination) to the empirical fMRI results by calculating the mean squared error 

(MSE). The MSE was defined as the averaged, squared difference between simulated 

and empirical results. Thus, each model and parameter combination resulted in one 

MSE value, with the smallest MSE constituting the model that most closely fit the 

empirical fMRI results. MSEs were calculated for each ROI separately, and averaged 

across datasets, weighted by the number of participants in the empirical dataset.

We investigated the resulting MSEs by displaying the MSE of the 100 best fitting 

parameter combinations for each model type. Particular attention was devoted to the 

best fitting model, as it most likely describes the mechanism underlying the empirical 

data. However, also the robustness to changes in the exact parameterization was of 

interest, thus we chose to display a range of best fitting model parameterizations. 

Additionally, we also investigated the performance of each model type across the 

best model parameterizations by calculating the average MSE, and associated 95% 

confidence interval, of the best 100 models. 
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Finally, we inspected the parameter values under which the models performed 

well. For this purpose, we were interested in the a and b parameters, as the best 

parameter values may provide additional information in characterizing the neural 

mechanism underlying perceptual expectations. In particular, the a parameter value 

gives an indication of the suppression magnitude, while the b parameter indexes 

how localized, in feature space, expectation suppression affects responses of neural 

populations.

Software and data availability

MRI data was preprocessed and analyzed using FSL 6.0 (FMRIB Software Library; 

Oxford, UK; www.fmrib.ox.ac.uk/fsl; [87]; RRID:SCR_002823). Additional fMRI 

data analysis was performed using custom Python (Python Software Foundation, 

RRID:SCR_008394), with NumPy ([98]; RRID:SCR_008633), and Matlab 2018b (The 

MathWorks, Inc., Natick, Massachusetts, United States, RRID:SCR_001622) scripts. 

The simulations were performed using Matlab 2018b. Data and code will be available 

upon publication here: http://hdl.handle.net/11633/aaddrwao  
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Supplemental Information

TABLE S4.1  Statistics from empirical fMRI data analysis in V1.

Shown are the results of the analysis of fMRI data from V1 per outcome metric (MAM, WC, 
BC, CP, SVM, AMA, AMS, IP; see fMRI outcome metrics for details). For each outcome metric the 
intercept and slope are reported, as well as the associated t-statistic and p value.

Statistic

Outcome metric Intercept Slope t-statistic p value

MAM 3.352 -0.200 -4.63 2.3e-05

WC 0.345 -0.033 -2.38 0.0207

BC -0.064 0.007 2.87 0.0058

CP 0.385 -0.033 -2.33 0.0234

SVM 29.730 -2.563 -3.51 0.0009

AMA 0.091 0.020 2.02 0.0478

AMS 0.054 0.026 2.68 0.0097

IP 0.130 0.018 1.12 0.2661

TABLE S4.2  Statistics from empirical fMRI data analysis in LOC.

Shown are the results of the analysis of fMRI data from LOC per outcome metric (MAM, WC, 
BC, CP, SVM, AMA, AMS, IP; see fMRI outcome metrics for details). For each outcome metric the 
intercept and slope are reported, as well as the associated t-statistic and p value.

Statistic

Outcome metric Intercept Slope t-statistic p value

MAM 4.031 -0.218 -5.15 3.6e-06

WC 0.107 -0.007 -0.67 0.5083

BC -0.024 0.004 2.17 0.0342

CP 0.130 -0.011 -0.94 0.3534

SVM 19.140 -0.209 -0.31 0.7599

AMA -0.006 0.042 3.81 0.0004

AMS -0.087 0.056 4.27 7.8e-05

IP 0.223 -0.006 -0.42 0.6752
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TABLE S4.3  Statistics from empirical fMRI data analysis in TOFC.

Shown are the results of the analysis of fMRI data from TOFC per outcome metric (MAM, WC, 
BC, CP, SVM, AMA, AMS, IP; see fMRI outcome metrics for details). For each outcome metric the 
intercept and slope are reported, as well as the associated t-statistic and p value.

Statistic

Outcome metric Intercept Slope t-statistic p value

MAM 2.259 -0.240 -6.96 4.3e-09

WC 0.035 -0.003 -0.41 0.6804

BC -0.015 0.006 3.87 0.0003

CP 0.050 -0.009 -1.05 0.2992

SVM 16.904 -0.287 -0.49 0.6274

AMA 0.003 0.044 4.77 1.4e-05

AMS -0.067 0.057 6.30 5.1e-08

IP 0.173 0.016 1.72 0.0914

TABLE S4.4  Feature spaces explain neural variance in their target ROIs.

Shown are the results of one-sample t-tests, and associated effect sizes (Cohen’s d), comparing 
the obtained correlation coefficients of neural and model RDM against zero. Results show 
that the designed feature spaces explain significant neural variance in their target ROI (V1 = 
orientation energy; LOC = shape complexity; TOFC = semantic similarity).

ROI

Feature space V1 LOC TOFC

Orientation energy t(55) = 6.23, p = 6.9e-8, 
dz = 0.83

t(55) = 2.14, p = 0.037, 
dz = 0.29

t(55) = -1.61, p = 0.112, 
dz = -0.22

Shape complexity t(55) = -0.71, p = 0.483, 
dz = -0.09

t(55) = 5.21, p = 2.9e-6, 
dz = 0.70

t(55) = 2.84, p = 0.006, 
dz = 0.38

Semantic similarity t(55) = -0.18, p = 0.858, 
dz = -0.02

t(55) = 4.19, p = 1.0e-4, 
dz = 0.56

t(55) = 3.03, p = 0.004, 
dz = 0.40
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TABLE S4.5  Contrasting feature space models.

Shown are the results of paired t-tests, and associated effect sizes (Cohen’s d), comparing the 
obtained correlation coefficients of neural and model RDMs between different feature space 
models. Results show that the designed feature space in V1 (orientation energy) explains more 
neural variance than any other feature space model. In LOC the designated feature space, 
shape complexity, reliably outperforms the orientation energy feature space model. However, 
while numerically larger, it does not significantly explain more variance than the semantic 
feature space. Similarly, in TOFC semantic similarity significantly explains more neural 
variance than the orientation energy feature space model. Again while numerically larger, it 
does not reliably explain more variance than the shape complexity feature space.

ROI

Feature space V1 LOC TOFC

Orientation energy vs 
Shape complexity

t(55) = 6.29, p = 5.5e-8, 
dz = 0.84

t(55) = -3.47, p = 0.001, 
dz = -0.46

t(55) = -3.06, p = 0.004, 
dz = -0.41

Shape complexity vs 
Semantic similar.

t(55) = 5.44, p = 1.2e-6, 
dz = 0.73

t(55) = -2.13, p = 0.037, 
dz = -0.29

t(55) = -3.26, p = 0.002, 
dz = -0.44

Semantic similarity vs 
Semantic similar.

t(55) = -0.30, p = 0.763, 
dz = -0.04

t(55) = 1.93, p = 0.060, 
dz = 0.26

t(55) = -0.48, p = 0.630, 
dz = -0.06

SUPPORTING TEXT S4.1 Alternative implementations of expectation suppression.

In our simulations the neural response was only computed using a modulated 

response function when the expected stimulus was presented (red curve in Figure 

4.3B). By contrast, when a different (unexpected) stimulus was presented, the 

unmodulated response function was used to compute the response (black curve 

in Figure 4.3B). As such, the response function was conditional on the identity 

of the stimulus. While such stimulus-conditional response modulations can be 

conceptualized in biological terms as reflecting a top-down modulatory effect (i.e., a 

modulation happening after the initial feedforward sweep), it is not the only logically 

possible way to formalize a modulation. An alternative way would be to formalize 

response modulations conditional on the expectation. This way, expectations would 

affect responses not only to expected but also unexpected stimuli. In this case, 

different stimuli would be affected differently by virtue of their location along feature 

space, rather than because of the use of a different response function for expected 

compared to unexpected stimuli. While this alternative formulation aligns with how 

response modulations were conceptualized for other modulatory effects, such as 

attention [148], it cannot provide a coherent mechanism that implements both of the 

main theoretical accounts of expectation suppression; sharpening and dampening. 

Here, we demonstrate this using a toy simulation. 
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Figure S4.1A, illustrates the alternative model definitions in which the responses 

to both, expected and unexpected stimuli are modulated by expectations. Thus, in 

these models the modulation by expectations is not conditional on the stimulus 

being expected, thereby representing not a consequence of recurrent message 

passing following stimulus presentation (as implemented in the main simulation), 

but for instance a prestimulus expectation and subsequent suppression of the 

responses. Crucially, as can be seen in Figure S4.1A and Figure S4.1B, only local 

models can reliably result in expectation suppression in this implementation. In 

other words, the response to an expected compared to an unexpected stimulus is 

exclusively suppressed (lower summed response in Figure S4.1A) for local models. 

Indeed, population sharpening (remote modulations) can only result in expectation 

enhancement in this model definition. This is not only the case in the depicted 

example in Figure S4.1A, but true for any combination of expected and unexpected 

stimuli; i.e., for remote models in S4.1A, the summed response to the unexpected 

stimulus will always be lower than to the expected stimulus, precisely because the 

remote modulation is affecting neural populations tuned away from the expected 

stimulus. In fact, the only case in which sharpening, or any other remote model, 

under this alternative implementation can account for expectation suppression, 

is for expected compared to expectation-free stimuli; i.e., stimuli for which no 

prediction is instantiated. Indeed, for the specific case of expectation-free stimuli 

this alternative implementation is identical to our implementation. That said, the 

vast majority of studies exploring expectation suppression contrast unexpected 

with expected stimuli, thus requiring a model that can account for expectation 

suppression of expected relative to unexpected (not only expectation-free) stimuli. 

Thus, we considered these alternative model implementations of little relevance 

in arbitrating between accounts underlying expectation suppression, because only 

local modulations (dampening) can reliably result in the phenomenon of interest 

(expectation suppression), thereby categorically ruling out sharpening, and any 

other remote or global model.
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FIGURE S4.1  Alternative model formulation. 

(A) Depicts the modulated neural response functions, with an example of the six modulation 
models. Thin black lines denote individual neural response functions across feature space, 
while thick lines indicated the summed response (normalized to one). There is no distinction 
between expected and unexpected stimuli in terms of the response functions, because a 
modulation is not conditional on the stimulus being expected in this implementation, but 
rather always occurs based on the expectation elicited by the leading image. Green shows the 
position of an expected stimulus in feature space (e.g., ~75 degrees orientation), according to 
which the responses are modulated. Blue dashed line shows a possible unexpected stimulus 
in feature space. (B) Shows the expectation effect (expectation suppression or enhancement) 
in response to the expected (solid green line) and unexpected (dashed blue line) stimulus 
shown in A. The contrast expected – unexpected is shown; i.e., negative values indicate 
expectation suppression, positive values expectation enhancement. As evident, only local 
models result in expectation suppression in this model implementation. Global models do 
not result in amplitude differences and remote models result in expectation enhancement. 
Notice, based on the summed response in A (thick line) that, the results in B are not dependent 
on the chosen unexpected or expected stimulus, but qualitatively would remain identical 
for each chosen stimulus. For example, for each position in feature space (stimulus) remote 
gain modulations would result in expectation enhancement, an increased response to 
expected (green solid line) compared to unexpected (blue dashed line) stimuli. In other words, 
sharpening accounts, and in fact any remote model, under this implementation cannot result 
in expectation suppression; similarly global models cannot reliably produce expectation 
suppression either. 	 
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FIGURE S4.2  Stimuli in orientation feature space (V1).

Utilized object stimuli arranged by their predominant orientation in steps of 20 degrees. (A) 
Stimuli from Richter and de Lange [145]. (B) Stimuli from Richter et al. [113].
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FIGURE S4.3  Stimuli in shape complexity feature space (LOC).

Object stimuli arranged by shape complexity; first principle component (PC 1) on shape 
complexity measures. The most complex stimuli (e.g., irregular shapes with many 
protrusions) are displayed on the left, while the least complex objects (simple, squared or 
circular objects) are found on the right. Positions on the horizontal axis are meaningful, while 
stimuli are stacked vertically only for display purposes. (A) Stimuli from Richter and de Lange 
[145]. (B) Stimuli from Richter et al. [113].

 

FIGURE S4.4  Stimuli in semantic similarity feature space (TOFC).

Object stimuli arranged by semantic similarity (after multidimensional scaling; MDS), 
based on human ratings. For example, note that vehicles on the left in panel (B) are clustered 
together, in close proximity to structures and other objects found outside, but very distant 
to food and kitchen items on the right. Only relative distances on the horizontal axis are 
meaningful, not absolute positions. Stimuli are stacked vertically for display purposes. (A) 
Stimuli from Richter and de Lange [145]. (B) Stimuli from Richter et al. [113].
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FIGURE S4.5  Median MSE values across parameter space are smooth and well contain the 
minimum.

We used a large parameter grid to ensure that we thoroughly explore the relevant parameter 
space. Additionally, we performed several tests to ensured that we succeeded in exploring the 
parameter space in sufficient detail. Shown above are median MSE values, averaged over all 
model types and parameterizations, for each ROI (V1 top, LOC middle, TOFC bottom) and free 
parameter (a left, b center,  right) separately. Two characteristics of all curves should be noted: 
(1) the minimum MSE is well contained within a valley in the parameter range, and (2) MSE 
curves, particularly close to the minimum value, are smooth. Combined these characteristics 
suggest a well sampled parameter space. Moreover, all three parameter have theoretical value 
boundaries. For instance, a = 0 results in no neural response at all after suppression, and a 
= 1 resulting in no expectation suppression, therefore resulting in the sampled range of a 
= 0.05 to 1. For non-global models, the b parameter value of b = 0 results in no expectation 
suppression, and on the other extreme, b was limited to b <= 2.3 (i.e., approximately ¾ π of the 
π sized feature space; also see Results, Locality vs globality). Thus, b values ranged from 0.1 to 
2.3. Similarly, σ = 0.1 as lower limit is bound by the requirement of σ > 0 for any Gaussian or 
von Mieses distribution. On the other end, large σ resulted in particularly poor fits, as evident 
above. Combined these considerations, and the results shown here, suggest that parameter 
space was sampled exhaustively and in sufficient detail. This in turn, boosts confidence in 
the reliability and validity of the presented results. Additional, more fine-grained analyses of 
the smoothness of MSE values over parameter spaces, which provide additional evidence that 
parameter space was thoroughly sampled, are presented in Figures S4.6, S4.7, and S4.8.  
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FIGURE S4.6  MSE across parameter grid of parameters a and b.

Shown are median MSEs, averaged over σ, per model type and ROI (V1 top, LOC middle, TOFC, 
bottom). For each model type the median MSE for all parameter combinations of a and b are 
shown. Colors are thresholded such that the median MSE of a = 1 (i.e., no suppression by 
expectation) is yellow, and the lowest MSE is dark blue. White cells denote rejected parameter 
combinations (also see: Response requirements in Materials and Methods). Results show that the 
change of MSEs, particularly for low MSE values, is smooth, suggesting that parameter space 
has been well sampled in all ROIs. The error landscape for each model type and ROI is smooth 
and well contains the respective minima, unless the parameter was bound by theoretical 
reasons, within the sampled range, indicating a well sampled parameter space.
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DAMPENED SENSORY REPRESENTATIONS FOR EXPECTED INPUT ACROSS THE VENTRAL VISUAL STREAM

FIGURE S4.7  MSE across parameter grid of parameters a and σ.

Shown are median MSEs, averaged over b, per model type and ROI (V1 top, LOC middle, TOFC, 
bottom). For each model type the median MSE for all parameter combinations of a and σ are 
shown. Colors are thresholded such that the median MSE of a = 1 (i.e., no suppression by 
expectation; in a, b parameter space) is yellow, and the lowest MSE is dark blue. White cells 
denote rejected parameter combinations (also see: Response requirements in Materials and 
Methods). It is apparent that very small and large sigma values in non-circular feature spaces 
(LOC and TOFC) resulted in rejections of the neural response spaces, compared to circular 
feature spaces (V1). Moreover, results show that the change of MSE values, particularly for low 
MSE values, is smooth, suggesting that parameter space has been well sampled in all ROIs.
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DAMPENED SENSORY REPRESENTATIONS FOR EXPECTED INPUT ACROSS THE VENTRAL VISUAL STREAM

FIGURE S4.8  MSE across parameter grid of parameters b and σ.

Shown are median MSEs, averaged over a, per model type and ROI (V1 top, LOC middle, TOFC, 
bottom). For each model type the median MSE for all parameter combinations of b and σ are 
shown. Colors are thresholded such that the median MSE of a = 1 (i.e., no suppression by 
expectation; in a, b parameter space) is yellow, and the lowest MSE is dark blue. White cells 
denote rejected parameter combinations (also see: Response requirements in Materials and 
Methods). Results show that the change of MSEs, particularly for low MSE values, is smooth, 
suggesting that parameter space has been well sampled in all ROIs.
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Abstract

Incidental statistical learning (SL) refers to the acquisition of statistical regularities 

without intention or instruction to learn. While the consequences of incidental 

SL have been extensively investigated, the characteristics and evolution of the 

underlying learning process itself remain poorly understood. As such, it is unclear to 

which extent humans can incidentally learn probabilistic, compared to deterministic, 

associations. In addition, it is unknown whether cross-modal statistical regularities, 

involving cue stimulus associations of at least two modalities, are equally well 

acquired as unimodal regularities. In fact, whether SL crucially depends on modality-

specific or domain general mechanisms remains debated. A modality-specific 

account of SL predicts that unimodal associations should be substantially easier and 

faster to learn than cross-modal associations. On the other hand, if domain general 

mechanisms are central to SL, cross-modal and unimodal SL should be largely 

comparable. In the present study we investigated the trajectory of incidental SL in 

cross-modal and unimodal association paradigms, while participants categorized 

object stimuli. Surprisingly, participants did not learn cross-modal (audio-visual) 

statistical regularities, with no evidence of SL in either behavioral or neural markers 

of SL. Indeed, even when both auditory cues and visual stimuli were task-relevant no 

SL was apparent. However, reliable learning was found for unimodal (visual-visual) 

associations. Data also show that the acquisition of these unimodal regularities 

occurred exclusively during blocks with deterministic, but not probabilistic 

associations, even though statistical information was available for learning during 

both blocks. In sum, our results suggest incidental SL of unimodal associations but 

not cross-modal regularities, suggesting that modality-specific mechanisms are 

critical for incidental SL, and that the acquisition of such regularities primarily occurs 

during exposure to strong, reliable associations.
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INCIDENTAL STATISTICAL LEARNING OF UNIMODAL BUT NOT CROSS-MODAL STATISTICAL REGULARITIES

Introduction

The world is marked by statistical regularities. For instance, sensory information 

often unfolds in predictable sequences, thus allowing prior information to predict 

future input. Accordingly, numerous studies show that prior knowledge can be used 

to respond faster and more accurately to expected stimuli [9,50,51,58,59,145]. Indeed, the 

formation of expectations can occur without any intention or instruction to learn 

[50,51,58,113], as evident during incidental statistical learning (SL). Once acquired, 

expectations can modulate sensory processing throughout cortex (review: [19]). For 

instance, neural responses to expected compared to unexpected stimuli are often 

attenuated in sensory areas. This phenomenon, expectation suppression, has been 

demonstrated  both in vision [23,26,113,145] and audition [21,22,159].

While the consequences of SL have been explored in numerous studies, the evolution 

and mechanisms of the learning process itself remain largely unclear. A central debate 

in the SL literature concerns domain-general and modality-specific contributions to 

SL [47,49,63]. Domain-generality suggests that SL in different modalities and contexts 

relies on similar neural mechanisms and computations, possibly comprising a 

unitary learning system [36,56,68–70]. In contrast, modality-specificity holds that SL is 

subject to modality specific constraints and crucially depends on neural changes and 

computations within sensory areas [63–67]. Moreover, how the trajectory of incidental 

SL is affected by the reliability of the underlying statistical regularities is largely 

unexplored, particularly in the case of cross-modal associations. Indeed, recent work 

suggests that humans may treat deterministic (rule based) regularities as categorically 

different from probabilistic (statistical) associations [160] and nonlinearities may 

characterize the learning of different association strengths [161,162].

Here we conducted a series of experiments to explore the development of incidental 

SL and to contrast predictions of domain-generality and modality-specificity. In 

particular, we investigated the extent and the evolution of learning during exposure 

to cross-modal (audio-visual) and unimodal (visual-visual) statistical regularities 

in probabilistic and deterministic contexts. If SL relies on modality-specific 

mechanisms, cross-modal SL, requiring information integration across modalities, 

should be more limited in scope and/or slower in its development than unimodal 

learning. On the other hand, if SL mainly depends on domain-general processes, 

cross-modal learning should be largely comparable to unimodal SL. Surprisingly, we 

found no evidence of cross-modal SL in either behavioral or fMRI markers of learning 

(Experiment 1). We also show that even when auditory cues and visual stimuli were 

task-relevant, and thus attended, there was no evidence of SL (Experiment 2). In 

contrast, we observed reliable behavioral facilitation by expectations for unimodal 
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(visual-visual) statistical regularities (Experiment 3). Combined, our results suggest 

that, unlike for unimodal associations, cross-modal statistical regularities are not 

readily acquired during incidental SL, even when both cue and stimulus are task-

relevant. Thereby the present data imply that incidental SL may primary rely on 

modality-specific mechanisms, which favor the formation of predictions within 

sensory modalities.

Results

We set out to investigate the development and circumstances under which incidental 

SL occurs. In particular, we explored SL in a cross-modal paradigm, with both task-

irrelevant (experiment 1) and task-relevant auditory cues (experiment 2) predicting 

visual stimuli. We also investigated SL in an identical paradigm with unimodal 

(visual-visual) cue-stimulus pairs (experiment 3). A single trial is depicted in Figure 

5.1A. Statistical regularities, shown in Figure 5.1B, determined the association between 

cue-stimulus pairs. In all three experiments it was not necessary for participants 

to learn the underlying associations, albeit predictions could aid in performing 

the task performance, the classification of the object stimulus as (non-)electronic. 

Participants were exposed to the statistical regularities throughout 13 blocks, over the 

course of two sessions, including eight blocks with probabilistic (896 trials) and five 

with deterministic associations (480 trials), as illustrated in Figure 5.1C.
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INCIDENTAL STATISTICAL LEARNING OF UNIMODAL BUT NOT CROSS-MODAL STATISTICAL REGULARITIES

FIGURE 5.1  Experimental paradigm. 

(A) Illustration of a single trial, showing a cue (500 ms), followed by an object stimulus (500 
ms) and a variable ITI (4000-6000 ms). In all three experiments participants classified the 
stimulus object as electronic or non-electronic by button press. Thus, expectations were 
not necessary for performing the task, but could be beneficial. For experiment 1 cues were 
task-irrelevant and consisted of sine-wave tones of different frequencies. For experiment 
2, on 20% of trials white noise was added to the sine-wave tones, indicating a no-go trial, 
requiring participants to withhold the object classification response. Experiment 3 used task-
irrelevant visual object cues instead of auditory cues. (B) Depicts the cue-stimulus association 
matrices for probabilistic blocks (left) and deterministic blocks (right). In deterministic 
blocks only expected cue-stimulus pairs were shown, while probabilistic blocks also 
contained unexpected (i.e., less likely) pairs. However, even during probabilistic blocks the 
expected stimulus was nonetheless four times more likely than each unexpected stimulus. 
The stimuli and their associations remained the same throughout the experiment for each 
participant. Association matrices were identical in the three experiments. (C) Illustrates the 
order of blocks over two sessions. Probabilistic blocks (P#) were of interest for analysis of 
the behavioral data, as these allow for a quantification of the expectation induced behavioral 
facilitation. Deterministic blocks (D) were added to promote additional SL, and assess learning 
from deterministic compared to probabilistic associations. Thus, particularly changes of 
expectation induced effects from P2 to P3, as well as from P4 to P5 are interesting, as these 
blocks were separated by deterministic blocks.

 

Data was analyzed in terms of the expectation benefit on reaction times (RT) for each 

block (RTbenefit = RTunexpected – RTexpected), as well as the magnitude of the expectation 

benefit between chronologically adjacent blocks. Moreover, to investigate the 

development of RT benefits over the course of the experiment we used Bayesian 

model comparison to arbitrate between six distinct models (Figure 5.2). In particular, 

we created models that embodied the hypothesis that expectations may either have 

no effect on RT, a constant effect, or a gradually emerging linear effect. Additionally, 
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we modeled a one switchpoint and a two switchpoint model, which implemented 

learning as taking place exclusively during the blocks with deterministic associations. 

A full model was added that comprised of two switchpoints with an additional linear 

learning effect. Finally, expectation effects on response accuracies were analyzed per 

block, and the magnitude of the effect compared between chronologically adjacent 

blocks.

 

FIGURE 5.2  Reaction time models. 

Illustration of the RT benefit modeled by six different reaction time models. First, RTs were 
preprocessed, including log transformation and then modeled per trial. RTs were allowed 
to vary between blocks in order to account for generic task-learning effects. Grey dashed 
lines indicate no RT benefit. Black lines depict the development of the RT benefit according 
to the respective model. In the bottom, the order of blocks is displayed, starting with two 
blocks with probabilistic association blocks (P1, P2), followed by one deterministic block 
(D), etc. Only trials of the probabilistic blocks were modeled, as deterministic blocks did 
not contain any unexpected stimulus pairs (i.e., allowing no estimation of the expectation 
benefit). Starting from the bottom, the no effect model does not include an RT benefit by 
expectations. The constant model adds a constant offset by expectations. A linear increase of 
RT benefits is modeled in the linear model. The one switchpoint model initially assumes no 
RT benefit, followed by a constant offset starting with block P3 or block P5 (i.e., one of the two 
blocks following the deterministic blocks). The two switchpoint model is identical to the one 
switchpoint model, except for that both switchpoints change the RT benefit. The full model, 
two switchpoints & linear, combines the two switchpoint model with an additional linear 
modulation of the RT benefit. Models were fit for each participant separately.
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No behavioral facilitation by cross-modal statistical regularities

In experiment 1, we investigated the behavioral and neural consequences of 

perceptual expectations, as well as their development during cross-modal SL. To 

this end, we exposed participants to auditory cues, which probabilistically predicted 

the identity of visually presented object stimuli. During fMRI scanning participants 

performed a classification task on the predictable object stimuli. Thus, responses to 

expected compared to unexpected objects should be faster, if participants made use 

of the statistical regularities. 

Results, depicted in Figure 5.3A-B, show that there was no reliable RT benefit due to 

expectations (RTbenefit = RTunexpected – RTexpected). Indeed, no block yielded a statistically 

significant RT benefit, except for block 6 (t(23) = 3.15, p = 0.004, dz = 0.64; all other blocks 

p > 0.05. Note: all p-values are uncorrected for multiple comparisons). Similarly, 

no reliable effect on response accuracy was evident (Figure 5.3D-E), with again only 

one block showing a weakly significant accuracy benefit (t(23) = 2.11, p = 0.046, dz = 

0.43; all other blocks p > 0.05). Moreover, the magnitude of the expectation benefit 

was not statistically different between any chronologically adjacent blocks in either 

response accuracy (all p > 0.05) or RT (all p > 0.05). In agreement with these results, 

Bayesian model comparison provided evidence for the absence of any RT benefit by 

expectations, with the best model fit (lowest WAIC) for the ‘no effect’ model (Figure 

5.3C). Indeed the average WAIC of the ‘no effect’ model was reliably lower than that 

of all other models (all p < 0.05), except the ‘one switchpoint’ model. In sum, there 

was no effect of cross-modal expectations on behavioral responses. Detailed results 

of all statistical tests are summarized in Table S5.1 and Table S5.2. Thus, the present 

data suggest that participants either did not make use of the statistical regularities to 

facilitate behavioral responses, or statistical regularities were not acquired, even after 

extensive exposure (i.e., 248 repetitions of each expected pair). 
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FIGURE 5.3  No behavioral facilitation by cross-modal statistical regularities. 

(A) and (D) show the absence of an RT benefit (RTbenefit = RTunexpected – RTexpected) and accuracy 
benefit (Accuracybenefit = Accuracyexpected – Accuracyunexpected) during the probabilistic 
blocks. All RT and accuracy benefits are (near) zero, and only one block statistically differed 
from zero in terms of RT benefit. Moreover, the magnitudes of the RT and accuracy benefits 
were not reliably different between any adjacent blocks. The horizontal dashed line denotes 
zero (i.e., no benefit of expectations). Vertical dotted lines indicate when a block with 
deterministic associations took place between the displayed probabilistic blocks (i.e., 
before block 3 and 5). Error bars indicate within-subject SEM. White bars indicate first and 
third quartile ranges. * p < 0.05, ** p < 0.01 (uncorrected p-values). (B) and (E), show RTs and 
response accuracies to expected and unexpected stimuli. Over time RTs become noticeably 
faster, suggesting a generic task-familiarity effect, but without a reliable differences between 
expected unexpected occurrences of the stimuli. Overall accuracies are near ceiling (mean: 
96.6%) and stable across the experiment, indicating reliable task performance. (C) Depicts 
results of the Bayesian model fits (WAIC). The ‘no effect’ model fit the data best; i.e., lower 
WAIC than all other models. Vertical lines denote statistically significant differences between 
WAICs (p < 0.05). This suggests that perceptual expectations were not acquired or did not 
influence RTs.
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INCIDENTAL STATISTICAL LEARNING OF UNIMODAL BUT NOT CROSS-MODAL STATISTICAL REGULARITIES

No modulation of sensory processing by cross-modal statistical 
regularities

If participants did not make use of the statistical regularities to facilitate behavioral 

responses, we may nonetheless find evidence for SL in neural modulations of 

sensory responses. Indeed, previous studies reported suppressed sensory responses 

even for task-irrelevant predictions or during passive fixation [23,113]. To investigate 

whether there is evidence for a neural modulation by expectations, we averaged BOLD 

responses in each block for all ROIs separately; primary visual cortex (V1), lateral 

occipital complex (LOC), and temporal occipital fusiform cortex (TOFC). Figure 5.4A 

and Figure 5.4B, show that visual responses to expected and unexpected stimuli were 

highly similar in object-selective LOC – i.e., expectation suppression was (near) zero 

for all blocks. Indeed, only one block showed a statistically reliable difference in 

BOLD responses to expected compared to unexpected stimuli (t(23) = -2.31, p = 0.031, 

dz = -0.49), while all other blocks did not yield a difference (all p > 0.05). Moreover, 

no reliable difference in the magnitude of expectation suppression (unexpected – 

expected) between adjacent blocks was found (all p > 0.05). Again, as for behavioral 

analyses, Bayesian model comparison (Figure 5.4C) favored the ‘no effect’ model (all 

p < 0.05), suggesting that cross-modal SL did not modulate perceptual processing, 

even after excessive exposure to the statistical regularities. Detailed statistics are 

reported in Table S5.3 and Table S5.4. Results in V1 and TOFC, representing early and 

higher visual areas, were qualitatively identical to LOC and are depicted in Figure S5.1 

and Figure S5.2 respectively. Thus, throughout the ventral visual stream there was 

no indication of cross-modal SL in terms of attenuation of sensory processing for 

expected stimuli. 
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FIGURE 5.4  No modulation of sensory responses by cross-modal statistical regularities. 

Cross-modal perceptual expectations do not modulate sensory responses in object-selective 
LOC. (A) Displays expectation suppression (BOLDunexpected – BOLDexpected) for each block. Again, 
no reliable evidence for an influence of expectation status on sensory processing is evident; 
i.e., expectation suppression is (near) zero in almost all blocks and did not statistically deviate 
from zero in any, but one block. Similarly, the magnitudes of expectation suppression was 
not reliably different between any adjacent blocks. The dashed line indicates zero; i.e., no 
difference in the response between expected and unexpected stimuli. Vertical dotted lines 
indicate when a block with deterministic associations took place between the displayed 
blocks with probabilistic associations (i.e., before block 3 and 5). Error bars indicate within-
subject SEM. White bars indicate first and third quartile ranges. * p < 0.05 (uncorrected 
p-values). (B) BOLD response to expected and unexpected stimuli for each block and session. 
(C) shows model fits in terms of the WAIC. The ‘no effect‘ model outperformed all other 
models, suggesting that expectations did not influence sensory processing. Vertical lines 
denote statistically significant differences between WAICs (p < 0.05).

 

To ensure that the absence of SL is not specific to the a-priori selected ROIs, we 

performed a whole-brain analysis, contrasting responses to unexpected with 

responses to expected stimuli per session. Results of this whole-brain analysis are 

shown in Figure 5.5. We did not find evidence for a reliable modulation of BOLD 

responses by cross-modal SL anywhere in the brain. 

In sum, there was no evidence for any modulation of responses by expectations 
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was considerable evidence for the absence of a modulation of neural and behavioral 

responses by perceptual expectations. Given that neither a behavioral nor neural 

modulation by expectations was found, it is likely that no cross-modal SL occurred.

FIGURE 5.5  No expectation suppression or expectation enhancement anywhere in cortex.

Depicted are results of a whole-brain analysis, contrasting BOLD responses to unexpected 
– expected stimuli (i.e., expectation suppression). Color indicates the parameter estimates, 
opacity the associated unthresholded z statistic. The panel on the left shows results for 
session 1, the right panel for session 2. As evident by the absence of any significant clusters 
(no outlines around clusters), there was no evidence for reliable expectation suppression or 
expectation enhancement in any brain area. 

 
No behavioral facilitation by cross-modal statistical regularities 
with task-relevant cues

Given that previous studies showed reliable modulations of behavioral and neural 

responses by perceptual expectations following SL [23,26,50,58,113,145], the question arises 

why experiment 1 failed to show any evidence for SL. One potential explanation is that 
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While participants still performed the electronic object classification task, following 

an auditory cue, they were now instructed to withhold any response if an auditory cue 

was paired with white noise (20% of trials), thereby making both auditory cue and 

visual stimulus task-relevant and hence attended. 
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FIGURE 5.6  No behavioral facilitation by cross-modal statistical regularities when cue and 
stimulus are task-relevant.

Cross-modal perceptual expectations do not result in behavioral facilitation. (A) and (B) 
show the RT benefit (RTbenefit = RTunexpected – RTexpected) and accuracy benefit (Accuracybenefit = 
Accuracyexpected – Accuracyunexpected) for each block. Only go trials were analyzed to ensure 
comparability with the other experiments. All RT and accuracy benefits are (near) zero, and 
did not significantly differ from zero. Moreover, the magnitudes of the RT and accuracy 
benefits were not reliably different between any adjacent blocks. The dashed horizontal line 
denotes zero (i.e., no benefit of expectations). Vertical dotted lines indicate when a block 
with deterministic associations took place between the displayed blocks with probabilistic 
associations (i.e., before block 3 and 5). Error bars indicate within-subject SEM. White bars 
indicate first and third quartile ranges. * p < 0.05 (uncorrected p-values). (C) Depicts results 
of Bayesian model fits (WAIC). The ‘no effect’ model fit the data best (i.e., lower WAIC than all 
other models), suggesting that perceptual expectations did not influence RTs. Vertical lines 
denote statistically significant differences between WAICs (p < 0.05). (D) and (E), show RTs 
and response accuracy to expected and unexpected stimuli. Over time RTs become noticeably 
faster, suggesting a generic task-familiarity effect, but without a reliable differences between 
expected and unexpected occurrences of the stimuli. Accuracies are stable and near ceiling 
across the experiment. 
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Results, depicted in Figure 5.6, show that there was again no evidence for a modulation 

of behavioral responses by expectations, even when both cue and stimulus were task-

relevant. Figure 5.6C shows that the ‘no effect’ model again had the lowest WAIC, and 

thus fit the data better, than all other models – albeit the difference was less reliable 

than in experiment 1. Figure 5.6A additionally illustrates that there was no evidence 

for an effect of expectations on RT in any but one block (t(22) = 2.64, p = 0.015, dz = 0.55; 

all other blocks p > 0.05). Moreover, the magnitude of the RT difference (RTunexpected – 

RTexpected) did not reliably differ between any chronologically adjacent blocks (all p > 

0.05), showing that participants did not benefit from expectations in terms of faster 

responses to expected stimuli. Similarly, there was no reliable benefit of expectations 

on response accuracy in any block (all p > 0.05), except for one (t(22) = 2.72, p = 0.013, 

dz = 0.57), nor was there a difference in accuracy benefit between adjacent blocks 

(Figure 5.6D; all p > 0.05). Results of all statistical tests are summarized in Table 

S5.5 and Table S5.6. Overall RTs were slower compared to experiment 1, as evident 

in Figure 5.6B, which was expected given the increased difficulty of the task due to 

the additional go/no-go signal. Response accuracies were marginally lower than in 

experiment 1, however still near ceiling (mean accuracy = 92.8%), indicating reliable 

task performance (Figure 5.6D). In sum, there was no behavioral facilitation by cross-

modal SL, even when both cue and stimulus were task-relevant.

Statistical learning facilitates behavioral responses to unimodal 
cue-stimulus pairs

After ruling out that a lack of attention to the cue modality caused the absence of 

behavioral facilitation by expectations, we hypothesized that the cross-modal nature 

of the cue-stimulus pairs may have prevented SL. Moreover, it is possible that the 

amount of exposure to the statistical regularities, or the strength of the association 

between cue-stimulus pairs, was not sufficient to yield reliable SL. To address these 

possibilities, we performed the same experiment as before, but replaced the auditory 

cues with visually presented object cues, while retaining all other parameters of 

experiment 1; hence resulting in a unimodal (visual-visual) associations paradigm 

with task-irrelevant cues. 

Results, depicted in Figure 5.7, show behavioral facilitation effects following 

unimodal SL. As evident in Figure 5.7A-B, participants responded faster to expected 

than unexpected stimuli, starting with block 3. In fact, all blocks from block 3 onward 

showed significantly faster responses to expected stimuli (blocks 3-8: all p < 0.001, dz 

> 0.8; blocks 1 and 2: p > 0.05). Interestingly, the magnitude of the expectation induced 

RT benefit did only reliably increase between blocks 2-3 (t(24) = 3.95, p = 6e-4, dz = 0.79) 

and blocks 4-5 (t(24) = 4.09, p = 4e-4, dz = 0.82), precisely the blocks between which 



CHAPTER 5

160

additional blocks with deterministic associations took place (all other p > 0.05, or a 

significant decrease in RT benefit between blocks 5-6). Results of all statistical tests 

are summarized in Table S5.7 and S5.8. In accordance with these results, Bayesian 

model comparison (Figure 5.7C) yielded the best model fit for the ‘two switchpoints’ 

model (lowest WAIC), closely followed by the ‘one switchpoint’ model. Interestingly, 

the ‘two switchpoint’ model reliably fit the data better than even the ‘two switchpoints 

& linear’ model (W=37, p=7e-04). Thus, combined these results suggest that 

participants learned to benefit from expectations at distinct switchpoints instead of 

gradually increasing in RT benefits. In fact, the switchpoints were modeled such that 

learning took place only from block 2 to 3, and from block 4 to 5, thus at the time that 

the deterministic association blocks were performed. 

We conducted an additional analysis, quantifying how much participants benefitted 

from each exposure to an expected cue-stimulus pair. In line with results presented 

above, data show that participants improved in RT benefit during deterministic blocks, 

with an average RT gain per exposure to an expected pair of 0.43ms (t(24) = 4.64, p = 1e-4, 

dz = 0.93), but decreased in RT benefit during probabilistic blocks, with an average RT 

loss per exposure to an expected pair of -0.27ms (t(24) = -2.35, p = 0.027, dz = -0.47), likely 

due to the presence of intermittently presented unexpected pairs. To avoid potential 

ceiling effects following learning in deterministic blocks, we also analyzed only the 

initial two probabilistic blocks (i.e., before exposure to deterministic associations). 

No reliable effect on RT benefit per exposure to expected pairs was found during the 

initial probabilistic blocks (RT loss per exposure to an expected pair of -0.34ms; t(24) = 

-1.23, p = 0.230, dz = -0.25). Thus, results suggest that participants exclusively learned 

the statistical regularities during blocks with deterministic associations. In fact, the 

acquire statistical regularities may have even been unlearned, or at least the reliance 

on these regularities decreased, when exposed to probabilistic associations, even 

though expected images were four times more likely than each unexpected image.

A similar albeit less reliable pattern of results is also evident in terms of response 

accuracies, depicted in Figure 5.7D and Figure 5.7E. Again, behavioral facilitation due 

to expectations (i.e., more accurate responses to expected than unexpected stimuli) 

arose in block 3 and block 5, with most blocks following block 3 showing a response 

accuracy facilitation by expectations (4 of 6 blocks: p < 0.05). A reliable increase in 

accuracy benefits between adjacent blocks was only found from block 4 to block 

5 (t(24) = 2.2, p = 0.037, dz = 0.44). Detailed results for response accuracy analyses are 

summarized in Table S5.8.

Finally, we asked whether the RT benefits reported above reflect perceptual surprise 

and/or response preparation. That is, an unexpected stimulus is not only perceptually 
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surprising, but may also require subsequent adjustments to the predicted motor 

response, if the unexpected stimulus is of a different category than the expected 

object (e.g., expected an electronic object, but saw an unexpected non-electronic 

object). Thus, we performed an analysis of the RT benefit per block, but only analyzed 

expected images, and unexpected images which required the same response as the 

expected stimulus would have required. Results of this analysis are depicted in 

Figure 5.7G-H, and are qualitatively similar to the analysis including all unexpected 

trials (Figure 5.7A-B). Detailed results of the statistical tests are summarized in Table 

S5.8E-F. In brief, there is a reliable RT benefit of prediction from block 3 onward (with 

the exception of block 4), even after accounting for possible effects of response 

preparation. Therefore, perceptual expectations facilitate behavioral response 

speed alongside any potential motor response adjustments. Indeed, note that the 

magnitude and reliability of the RT effect appears to be reduced, thereby suggesting 

that motor preparations also contributed to the overall RT benefit induced by valid 

expectations. 

In sum, results from experiment 3 demonstrate that the amount of exposure to the 

statistical regularities, as well as the reliability of the associations, were sufficient for 

robust SL to emerge. In particular, data show that behavioral responses in terms of 

RTs, and to a lesser degree response accuracies, are improved by unimodal perceptual 

expectations. Moreover, these behavioral benefits of expectations exclusively 

emerged after blocks with deterministic associations, suggesting that participants 

may particularly depend on strong, reliable associations during incidental SL.
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FIGURE 5.7  Statistical learning facilitates behavioral responses to unimodal cue-stimulus 
pairs. 

Valid perceptual expectations result in behavioral facilitation. (A) shows the expectation 
induced RT benefit (RTbenefit = RTunexpected – RTexpected) for each block. Significant RT benefits due to 
valid expectations are evident from block 3 onward, following the first block with deterministic 
associations (vertical gray dotted lines). All subsequent blocks show a strong and reliable RT 
benefit. The dashed horizontal line denotes zero (i.e., no benefit of expectations). Vertical 
dotted lines indicate when a block with deterministic associations took place between 
the displayed blocks with probabilistic associations (i.e., before block 3 and 5). RT benefits 
between adjacent blocks increased from block 2 to 3, and from block 4 to 5. Error bars indicate 
within-subject SEM. White bars indicate first and third quartile ranges. * p < 0.05, ** p < 0.01, 
*** p < 0.001 (uncorrected p-values). (B) shows RTs to expected and unexpected stimuli. As 
in experiment 1 and 2, RTs become noticeably faster over time, indicating the generic task-
familiarity effect. However, at the same time responses to expected stimuli are reducing in RTs 
more than to unexpected stimuli (RT benefit). (C) depicts results of Bayesian model fits (WAIC). 
The ‘two switchpoints’ model fit the data best (lowest WAIC), while the ‘no effect’ model 
performed worse than all other models. These results suggest that perceptual expectations 
did significantly influence RTs, following two distinct learning events, in particular during 
the blocks with deterministic associations. Vertical lines denote statistically significant 
differences between WAICs (p < 0.05). (D) shows expectation induced accuracy benefits 
(Accuracybenefit = Accuracyexpected – Accuracyunexpected). (E) shows response accuracies to expected 
and unexpected stimuli per block, indicating stable response accuracies near ceiling (mean: 
94.2%). (F) RT benefit by valid predictions without effects of motor response preparation. 
Analyzed were expected trials and unexpected trials which required the same response as 
the expected object. Results are similar to those reported in (A), albeit of a smaller magnitude 
and less reliable. Thus, expectations facilitate behavioral responses even when accounting 
for motor response adjustments. (G) shows RTs to expected stimuli and unexpected stimuli 
requiring the same response as the expected object. A similar pattern of results is evident as 
in (B).

Discussion

In the present study we investigated the evolution of cross-modal and unimodal 

incidental statistical learning (SL). Participants were exposed to probabilistically and 

deterministically associated cue-stimulus pairs, while performing a categorization 

task on the stimulus image. While participants were informed about the presence 

of statistical regularities and knowledge of these regularities could aid in task 

performance, learning was not requested, nor required to perform the task, thus 

constituting incidental learning. Data showed no facilitation of reaction times (RT) 

or response accuracies, nor a modulation of neural responses, as measured by fMRI 

BOLD, by statistical regularities during presentation of cross-modal (audio-visual) 

pairs (experiment 1). Moreover, no facilitation of behavioral responses was evident 

even when both cue and stimulus modalities were task-relevant (experiment 2). 

However, RTs were faster and responses more accurate to expected stimuli when 

unimodal (visual-visual) pairs were presented (experiment 3). Moreover, we 
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demonstrated that learning of unimodal pairs primarily took place during exposure 

to deterministic, but not probabilistic associations. Thus, our results provide 

evidence for robust unimodal, but not cross-modal, incidental SL from deterministic 

associations.

Incidental statistical learning depends on strong statistical 
regularities

The present results demonstrate that participants readily learn and use incidentally 

acquired unimodal statistical regularities (experiment 3), shown here in terms of 

faster and more accurate responses to expected compared to unexpected stimuli. 

These results echo conclusions of previous studies showing reliable behavioral 

facilitation following incidental SL [50,51,54,58,60,73,145]. Learning was incidental in 

the present study, as it took place without any instructions to learn, nor the need 

to acquire the statistical regularities for performing the task. Nevertheless, valid 

expectations were associated with improvements in behavioral performance. In an 

additional analysis we also showed that expectations improved response speed, even 

if the required motor response was identical for expected and unexpected stimuli. 

However, the magnitude of the response speeding appeared to be smaller and less 

reliable than when unexpected trials with different motor responses were included 

in the analysis. Thus, these result suggest that perceptual expectations benefit 

behavioral responses by facilitating perception and inducing response preparations.

Interestingly, results showed that reliable learning appeared to take place exclusively 

during exposure to deterministic associations, while no learning was apparent 

during blocks with probabilistic associations. In particular, there was no evidence 

of SL during the initial two (probabilistic) blocks, even though 16 repetitions of each 

expected cue-stimulus pair were shown per block, compared to only 4 repetition 

of each unexpected pair. Given the number of trials with expected pairs and the 

fairly simple transition matrix (four cue-stimulus pairs), one may have expected 

at least some evidence for SL following the initial two blocks, particularly in light 

of the demonstration of reliable learning following limited exposure to statistical 

regularities in classic studies of SL; e.g. only 24 repetitions of each of four triplets 

[50,54], or six repetitions of eight image pairs, even with interference by two unpaired 

images [73]. Moreover, learning following such limited exposure was demonstrated 

if triplets were interrupted by unattended triplets within the same modality [60]. 

Additionally, even learning of differences in conditional probability between triplets 

following limited exposure has been shown [50]. Compared to these studies, the 

number of exposure to the expected pairs was larger in the first two probabilistic 

blocks alone in the present study. However, a crucial difference is that the pairs and 
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triplets in the above cited studies were deterministically associated. In our data, no SL 

occurred during the initial two blocks with probabilistic associations (32 repetitions 

per expected pair), even though expected trailing images were four times more likely 

than each unexpected image. Following a mere 24 exposures per image pair in the 

first deterministic block, substantial behavioral facilitation by expectations emerged. 

Similarly, following the second set of deterministic blocks, another significant 

increase in behavioral benefits was evident. In contrast, no evidence of additional 

SL was found during any probabilistic block. Indeed, there was even evidence that 

participants decreased in RT benefits during exposure to probabilistic associations. 

The observation that learning took exclusively place during blocks with deterministic 

associations was further supported by Bayesian model comparison, showing that 

the model implementing learning exclusively during the two sets of deterministic 

blocks explained the RT data best. In fact, this model reliably fit the data better than 

an identical model with two learning points and an additional linear learning effect 

during probabilistic blocks, thus implying that no additional SL occurred due to 

exposure to probabilistic associations. 

Our data also show that once acquired, statistical regularities appear to be maintained 

during probabilistic blocks, as evident by the fact that even the last block still 

yielded a reliable RT benefit. A similar robustness of learned priors has been shown 

in contextual cueing experiments [163]. However, we did observe evidence that the 

RT benefit may have decreased slightly during probabilistic blocks, suggesting that 

decreases in statistical reliability are tracked even if people are not instructed to 

learn the underlying probabilities. That said, it should be noted that this decrease 

does not necessarily reflect a decrease of the learned association, but may also reflect 

generic processes, such as an increase in fatigue, and thus reduced exploitation of the 

perceptual priors, over the course of the experiment.

In brief, the present results suggest that incidental SL may primarily occur when 

humans are exposed to particularly strong statistical associations. Our data show 

that learning of weaker, probabilistic associations is comparably negligible – indeed, 

there was no evidence for learning from probabilistic associations. These results are 

surprising and we do not believe that incidental SL of probabilistic associations is 

categorically impossible [162]. However, the required exposure for reliable learning 

may substantially exceed the amount required for learning from deterministic 

regularities [161]. We address additional explanations and interpretational concerns 

later in the discussion (see: Limitations). 
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Actively attending cue-stimulus pairs does not suffice for cross-
modal incidental statistical learning

Surprisingly, we did not find any evidence of cross-modal SL during experiment 1 and 

2. In particular, we showed that the ‘no effect’ model had a better fit to the RT data 

than any other model. Moreover, there was no reliable RT or accuracy benefit due to 

expectations, nor any increase in the expectation benefit between adjacent blocks. 

One plausible explanation for the absence of cross-modal SL in experiment 1 is that 

auditory cues were ignored by participants, because the auditory modality was task-

irrelevant. Indeed, previous studies have suggested that attention gates the effects of 

visual SL [62,145]. We ruled out this explanation by showing in experiment 2 that, even 

when both cue and stimulus were task-relevant, and thus actively attended, no SL was 

evident for cross-modal associations. Therefore, attending and actively processing 

both cue and stimulus does not suffice for cross-modal incidental SL to arise, unlike 

in unimodal SL [113,145]. The present results support and extend results of previous 

studies using explicit assessments of SL. Indeed, at least one study of artificial 

grammar learning concluded that cross-modal learning may be substantially more 

difficult than unimodal learning [164]. We show an absence of cross-modal SL using 

a different paradigm and additionally provide fMRI data demonstrating that cross-

modal SL did not only fail to produce behavioral facilitation, but also did not result 

in neural modulations anywhere in cortex. Thus, combined the data suggest that no 

cross-modal SL occurred irrespective of whether cue and stimulus were task-relevant.

Modality-specific vs domain general contributions to incidental 
statistical learning

Recent proposals have attempted to unify arguments for modality-specific and 

domain general mechanisms of SL. For example, Frost et al. [63] hypothesize that 

local computations within unimodal sensory areas, as well as a multi-domain 

network, operating on modality specific representations, both contribute to detect 

statistical regularities. Our results show reliable incidental SL within, but not across 

modalities in behavioral measures or BOLD responses. In line with previous studies 

showing extensive expectation suppression in sensory areas following unimodal 

SL [21–23,26,113,145,159], the present results support the notion that local computations 

within sensory modalities may be crucial in detecting statistical regularities and pose 

one possible mechanism by which SL can occur [63,165]. In contrast, cross-modal SL 

would depend on an integration of information in multisensory areas and regularity 

detection in the hypothesized domain general network [63]. Following this account, 

potential explanations for the absence of cross-modal SL in the present data are a 

failure of the information integration in multisensory areas and/or lack of regularity 
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detection in the domain general network. While we cannot distinguish between 

these two explanations, the following section will discuss possible explanations why 

cross-modal SL did not arise in the present study.

Cross-modal statistical learning may depend on explicit learning

While the present data fail to provide any evidence for incidental SL of cross-modal 

regularities, there is ample previous evidence that cross-modal associations can in 

principle be learned and can affect behavior [18,25,166–168]. This apparent contradiction 

raises the question under which circumstances cross-modal learning may occur and 

how these conditions differ from the present study. A crucial difference may be the 

type of SL that was investigated here compared to previous studies, namely implicit 

and incidental learning compared to explicit learning. 

A rich research tradition has linked implicit learning to non-declarative memory, 

and explicit learning to declarative memory, each associated with different neural 

mechanisms. The medial temporal lobe (MTL) is thought to be a key area in the 

formation of declarative memory [169], and thus explicit learning. Moreover, MTL has 

been suggested to be involved in perceptual predictions as well [170,171]. Notably, the 

hippocampus, part of the MTL, receives and sends input to all sensory modalities 

[172], thus constituting a plausible candidate to support cross-modal SL. Moreover, 

conscious awareness of a stimulus is associated with wide-spread information 

broadcasting across a network of distributed cortical areas [173,174], which analogously 

may hold for explicit learning, allowing the broadcasting of representations of the 

associations between stimuli from different modalities across a broad network. 

Thus, cross-modal SL may particularly depend on explicit learning processes, 

possibly involving the MTL and information integration across a distributed network, 

thereby enabling domain-general learning. On the other hand, unimodal SL may not 

necessarily depend on the MTL (although see: [31]) or wide-spread broadcasting. This 

in turn, would allow unimodal SL to unfold implicitly, relying on local computations 

in sensory cortex, thus giving rise to the widely reported sensory suppression of 

expected stimuli [21–23,26,113,145,159], thereby resulting in modality-specific SL [63–67].

This account proposes that previous studies showing cross-modal SL should 

involve (more) explicit learning, and hence explicit knowledge, compared to the 

present experiments. While difficult to assess formally, in line with this suggestion 

is that studies reporting cross-modal SL frequently used passive exposure during 

familiarization [167,168], with some providing explicit instructions that a test will 

follow after familiarization [166]. It is plausible that participants actively and explicitly 

learned statistical regularities during passive familiarization, given the absence of 



CHAPTER 5

168

any competing task and particularly given the instruction of a subsequent test. Of 

the three above cited studies only one reported testing for explicit knowledge of the 

underlying regularities and did indeed find evidence of explicit knowledge following 

passive exposure [168]. Thus, these results support the hypothesis that explicit 

learning, and as a consequence explicit knowledge, may underlie previous reports of 

cross-modal SL. Moreover, other studies reporting cross-modal SL used substantially 

simpler association matrices consisting of only four cue-stimulus combinations 

[18,25], compared to the present 16 cue-stimulus combinations. Given that simple 

cue-stimulus combinations are more likely to be noticed explicitly (i.e., consciously 

keeping track of four compared to 16 probabilities), it is possible that cross-modal SL 

in these studies may also reflect a result of explicit learning. In contrast, in the present 

study we used comparably complex statistical regularities while participants were 

engaged in an active task, which did not explicitly require, nor request from them, 

the learning of the underlying associations. As a consequence learning may have 

been less explicit than in previous studies. Indeed, during debriefing participants 

frequently reported not noticing any statistical regularities. Therefore, learning 

in the present study may have relied largely on non-declarative memory systems 

in the specific sensory areas, without MTL involvement or broadcasting of the 

representations across multi-domain areas, thereby precluding cross-modal, but not 

unimodal SL.

Limitations

Finally, it is worth considering alternative explanations for the absence of cross-

modal statistical learning. For instance, while we show that attending both cue and 

stimulus is not sufficient to yield cross-modal SL, our task did, strictly speaking, 

not require participants to attend the identity of the auditory cues to perform the 

task; i.e., only detection of simultaneously presented white noise was necessary, 

hence identity cue may have been ignored. Therefore, we cannot rule out that cross-

modal learning would have arisen, if cue identity would have been task-relevant. 

However, given that cue identity was also task-irrelevant in the unimodal experiment 

(Experiment 3), and that unimodal SL has been demonstrated in both humans and 

non-human primates during passive fixation and a range of cover-tasks [23,26,31,50,58–

60,73,113,145], this explanation still suggests a qualitative difference between cross-

modal and unimodal statistical learning, as argued here. 

Next, it is possible that learning in the unimodal (visual-visual) case was aided by the 

fact that visual stimuli were naturalistic objects, unlike the utilized artificial auditory 

cues (sine-wave sounds). Naturalistic objects have semantic content, fitting into 

readily available categories and possessing clear linguistic labels. On the other hand, 
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sine-wave tones may be categorized based on low level characteristics, such as pitch, 

and an according verbal label assigned (e.g. ‘the high pitched sound’). While such 

sounds may evoke some semantic associations, they certainly do not possess the rich 

and reliable semantic content and categorization as naturalistic object images afford. 

Thus, these differences between visual and auditory stimuli may have made SL easier 

in the unimodal case, because category representations and linguistic labels may 

help structuring and acquiring statistical regularities. However, given that previous 

studies show unimodal SL in audition using artificial stimuli [22], it seems unlikely 

that a lack of semantic content accounts for the complete absence of cross-modal 

SL. Nonetheless additional research is required to conclusively rule out alternative 

explanations for the present results, for instance by showing reliable learning of 

artificial auditory-auditory associations following the same amount of exposure, 

while utilizing a comparable task.

Finally, we consider two limitations which may explain the absence of learning during 

probabilistic blocks. It is possible that the presence of blocks with deterministic 

associations may have prevented reliable learning from probabilistic associations 

due to changes in the underlying statistics; i.e., volatility in the environment. In other 

words, participants may have noticed that the statistical regularities are more reliable 

in deterministic blocks and thus, discarded information during probabilistic blocks. 

While theoretically sound, we do not find any evidence for SL during (probabilistic) 

blocks 1-2, before any exposure to the deterministic associations, even though each 

expected pair was presented 32 times. Thus, if any learning occurred during these 

first probabilistic blocks, it must be so limited in scope, that it was not detectable in 

the present data. That said, without more extensive exposure to only probabilistic 

associations, we cannot conclusively rule out this explanation. 

A related limitation, possibly occluding learning during probabilistic blocks, is 

that deterministic blocks may have led to a ceiling effect for the RT benefit before 

any learning from probabilistic associations could be observed. Irrespective of 

the degree of learning, there is an upper limit on the magnitude of the RT benefit 

expectations can provide in the object categorization task. Thus, if learning from 

probabilistic associations is indeed very slow, therefore not evident during initial 

probabilistic blocks, it is possible that an effect could emerge in later blocks, if the 

maximum RT benefit was not already reached following the deterministic blocks. 

However, it should be noted that no learning was observed during any of the initial 

four probabilistic block, while learning still occurred during the second set of 

deterministic blocks (i.e., two switchpoints). Nonetheless, a study with extensive 

exposure to only probabilistic association could resolve this limitation. Moreover, 

it should be noted that learning from probabilistic associations must be possible, 
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because the reliability of probabilistic associations can be (almost) arbitrarily 

increased. However, surprisingly we show that no learning at all took place during 

the here implemented associations; i.e., an expected stimulus which is four times 

more likely than each one of three unexpected stimuli. This drastic absence of any 

learning suggests the possibility that nonlinearities may exist in how people learn 

from increasingly reliable associations; indeed, recent work even suggests that, at 

least if assessed explicitly, humans treat deterministic and probabilistic regularities 

differently [160]. Thus, an interesting question is how the potentially nonlinear 

learning profile for incidental SL may look like.

Conclusion

In sum, we found that incidental SL was not observed during exposure to cross-

modal statistical regularities, but was robustly present during exposure to unimodal 

statistical regularities. These results suggest that incidental SL may crucially depend 

on modality-specific mechanisms, favoring the acquisition of unimodal over cross-

modal associations. We speculate that cross-modal SL may depend on broadcasting 

of multimodal stimulus representations into a domain general network, possibly 

triggered by explicit learning of the underlying regularities. Finally, we demonstrate 

that the acquisition of unimodal statistical regularities depends on particularly 

strong (here deterministic) associations, and is negligible during exposure to weaker, 

probabilistic associations. 

Materials and Methods

Participants and Data Exclusion

For all experiments we recruited adult healthy, right-handed volunteers from 

Radboud University research participation system. All three experiments followed 

the guidelines for ethical treatment of research participants by CMO region Arnhem-

Nijmegen, The Netherlands. Sample sizes were based on obtaining 80% power to 

detect an effect size of Cohen’s d >= 0.6, resulting in a desired n = 24. For experiment 1, 

we acquired MRI data from 26 healthy volunteers. All participants were right handed 

and had normal or corrected-to-normal vision. Data from two participants were 

excluded from all analysis due to incomplete datasets, resulting in a final sample 

of 24 analyzed datasets (16 females; age 23.8 ± 4.5 years, mean ± SD). Additionally, 

two participants were rejected from fMRI data analysis due to due excessive motion 

during MRI scanning, formalized as showing significantly more (3 SD above the group 

mean) relative motion events exceeding half a voxel size (i.e., 1 mm).
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We collected behavioral data from two additional samples of 24 and 25 healthy 

volunteers for experiments 2 and 3 respectively. For experiment 2, data from one 

participant was rejected due to an excessive amount of incorrect responses (accuracy 3 

SD below the group mean). Thus the analyzed sample sizes were n = 23 for experiment 

2 (16 females; age 23.5 ± 4.0 years, mean ± SD) and n = 25 for experiment 3 (12 females; 

age 24.6 ± 3.5 years, mean ± SD).

Stimuli and experimental paradigm, Experiment 1: multimodal, cue 
task-irrelevant 

The experimental design was similar in the three experiments. Thus, in the following 

we first describe experiment 1, an fMRI experiment with multimodal associations and 

task-irrelevant cues. Next, we illustrate the differences of experiments 2 (multimodal 

associations with task-relevant cues) and experiment 3 (unimodal associations with 

task-irrelevant cues) with respect to experiment 1. All experiments consisted of two 

sessions on two consecutive days.

Paradigm

On each trial participants were presented with an auditory cue (~300 ms), an ISI of 200 

ms, then an object image at fixation (500 ms), followed by a variable ITI of 3000-6000 

ms; Figure 5.1A illustrates a single trial. Participants were instructed to indicate by 

button press whether the image showed an electronic or non-electronic object. Both 

accuracy and response speed were emphasized in the instructions. Each participant 

was presented with four different auditory cues and four object images. Cues were 

identical for all participants, while the four objects were randomly sampled from a 

database of 56 object images, with the only constraint that each participant saw two 

electronic and two non-electronic objects. We ensured that participants recognized 

the objects as clearly (non-)electronic. Crucially, the auditory cues were predictive of 

the identity of the object image, thus making an object (un-)expected given the cue. 

Each cue was associated with one object, with 57.1% reliability of the associations; 

i.e., each expected stimulus was four times more likely than each unexpected 

stimulus given its associated cue. Figure 5.1B shows the transition matrices. All 

objects and cues occurred equally often throughout the experiment and objects 

served both as expected and unexpected stimuli. Each block (run) consisted of 112 

trials (64 expected, 48 unexpected) taking ~14 minutes, including instruction and 

seven null events. Null events were 11 second events with blank screens only showing 

a fixation bull’s-eye. The stimuli and their association remained identical throughout 

the experiment, except for a deterministic variation of the main task, which used 

the same cue-stimulus pairings, but only consisted of expected cue-stimulus pairs, 
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and shorter ITIs (1000-3000 ms). The rationale of these deterministic blocks was to 

promote additional SL. Figure 5.1C illustrates the order of blocks. Participants were 

not informed of the different versions of the task, and were usually unable to notice 

any difference between the blocks, except for the shorter ITI. However, to reduce 

between-subject variability, participants were informed of the presence of statistical 

regularities governing the relationship between the cue-stimulus pairs, without 

indicating which particular associations are present. Throughout the entire block a 

fixation bull’s-eye (outer-circle, 0.7° visual angle) was presented. Participants were 

instructed to maintain fixation on the bull’s-eye. Performance, both in terms of 

accuracy and reaction time were displayed at the end of each block.

Localizer

In addition to the main task blocks participants performed a localizer run used to 

define ROIs and obtain expectation-neutral representations of each object image. 

During the localizer run the four object images were shown, one at a time, flashing 

at 2Hz (300 ms on, 200 ms off) for 11 seconds. Each image was repeated ten times. 

Additionally, the phase-scrambled version of each image was also repeated five times 

in order to contrast responses to intact compared to scrambled objects. Trial order was 

pseudo-randomized, excluding direct repetitions of the same stimulus. Participants 

were instructed to press a button whenever a low contrast version of the stimulus was 

shown. Targets occurred once during each 11 second trial, and were shown for one 

cycle (i.e., 300 ms). This task ensured that participants attended the object stimuli. 

The duration of the localizer run was ~14 min.

Procedure

On each day participants performed four blocks (runs) of the probabilistic main 

task, as described above, in the MRI scanner. Additionally, participants performed a 

localizer run and practice block at the beginning of the first day. The practice block 

used different stimuli, and ensured that participants understood the task. Before 

performing the practice block, the sound volume was adjusted for each participant 

to ensure that they could hear the stimuli over the noise of the MRI scanner. On 

day one, after two blocks of the main task, participants performed one block of the 

deterministic version of the main task during which a T1-weighted image was 

acquired. Next, participants performed another two blocks of the probabilistic main 

task. Finally, outside of the MRI scanner, participants performed two more blocks of 

the deterministic version. In total day one took ~2.15 hours, of which 1.30 hours were 

in the scanner. Day two started with two blocks of the deterministic version of the 

task, outside the MRI scanner. Next, as during day one, two blocks of the probabilistic 
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main task were performed in the MRI, followed by one deterministic block, and 

two more probabilistic main task blocks. Day two concluded with a final run of 

the localizer and took ~2 hours in total. Across the entire experiment participants 

performed 896 trials of the probabilistic and 480 trials of the deterministic version 

of the task, thereby resulting in 248 repetitions per expected cue-stimulus pair and 32 

repetitions per unexpected pair.

Stimuli

Auditory stimuli were designed to be expectation neutral (i.e., avoiding naturalistic 

tones), distinct from one another, and well audible in the MRI scanner (i.e., avoiding 

frequencies and timbre of the MRI noise). Thus, we used pure tones (sine waves) at 

450 and 1000 Hz, as well as two sliding sine tones linearly modulating from 800-

1250 and 1200-750 Hz. Similar tones, but at different frequencies were used during 

the practice block (725, 1275, 500-950, and 1100-650 Hz). All sounds were sampled at 

48kHz, lasted 300 ms, and were padded with a 5 ms fade-in and fade-out. During MRI 

scanning auditory stimuli were presented using in-ear, MR-compatible headphones 

(Insert Earphones Model S14; Sensimetrics Corporation, MA, USA). Outside the 

scanner over-ear headphones (Sennheiser HD-202) were used.

The 56 object images were a subset of the stimuli used in one of our previous 

experiments (Richter and de Lange, 2019), taken from a larger stimulus set from Brady 

et al. (2008). Images were 5° x 5° in visual angle, presented on a mid-gray (128,128,128 

RGB) background. During MRI scanning stimuli were back-projected using an EIKI 

LC-XL1000 projector at 1024 x 768 pixel resolution and 60 Hz refresh rate. The screen 

was visible using an adjustable mirror. Outside the scanner stimuli were presented on 

a LCD screen (BenQ XL2420T, 1920 x 1080 pixel resolution, 60 Hz refresh rate), while 

keeping the visual angle the as similar as possible as during MRI scanning.

Experiment 2: multimodal, cue task-relevant

Experiment 2 was identical to experiment 1, except for the addition of a go/no-go 

condition based on the auditory cue. Participants still performed the classification of 

the electronic items, however only when a standard auditory cue was played (go trials). 

On 20% of trials the auditory cue was played, but with white noise superimposed to 

the sine wave sound, thereby indicating a no-go trial. Participants were instructed 

to withhold any response to objects on no-go. Thus, during experiment 2 both, the 

auditory cue and visual stimulus were task-relevant and presumably attended. 

Besides this modification experiment 2, was purely behavioral and therefore did not 

include the localizer runs. However, the ITI duration and general procedure was kept 
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identical to experiment 1, including a 10 minute break to mimic the transitions from 

inside the MRI to the behavioral part of experiment 1.

Experiment 3: unimodal, cue task-irrelevant

Experiment 3 was identical to experiment 1, except for that the auditory cues were 

replaced with visual cues. Visual cues were pseudo-randomly sampled from the same 

database that also supplied the object stimuli in experiment 1. Thus, experiment 3 

consisted of object-object cue-stimulus pairs, with each object being presented for 

500 ms, without ISI. Participants performed the same electronic item identification 

task, as during experiment 1, in this case only on the trailing (second) object on each 

trial. The same statistical regularities as in experiment 1 governed the transitions 

between objects, including an identical number of trials and blocks. As experiment 

2, experiment 3 was purely behavioral, and thus the localizer runs were omitted. The 

transition matrix, ITI and general procedure were kept identical to experiment 1 and 2.

fMRI data acquisition

MRI data was acquired on a 3T Skyra scanner (Siemens, Erlangen, Germany), using 

a 32-channel head coil. For the acquisition of anatomical images a T1-weighted 

magnetization prepared rapid gradient echo sequence (MP-RAGE; GRAPPA acceleration 

factor = 2, TR/TE = 2300/3.03 ms, voxel size 1 mm isotropic, 8° flip angle) was used. A 

whole-brain T2*-weighted multiband-4 sequence (time repetition [TR] / time echo [TE] 

= 1500/33.4 ms, 68 slices, voxel size 2 mm isotropic, 75° flip angle, A/P phase encoding 

direction, FOV = 213 mm, BW = 1850 Hz/Px) was used to acquire functional images. The 

first three volumes of each run were discarded to allow for signal stabilization.

Data analysis

Behavioral data analysis

Behavioral data was analyzed in terms of accuracy and response time (RT). Outliers, 

which were arbitrarily defined as trials with RT < 200 ms or RT > 1500 ms, were rejected 

from analysis. Moreover, trials with no response (misses) were not included in RT 

analyses. No-go trials in experiment 2 were removed from the main analyses. Because 

only the probabilistic version of the main task contained unexpected and expected 

cue-stimulus pairs, blocks with deterministic associations were not included in the 

following analyses. In addition, participants with poor performance, indicating a 

lack of attention to the task, formalized as a mean accuracy of 3 SD below the group 

mean, were excluded from all analyses.
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We analyzed RT and accuracy data from the probabilistic blocks, comparing 

responses to expected and unexpected object stimuli. First we averaged, for each 

subject separately, RTs across trials within each block for expected and unexpected 

stimulus pairs. In addition, we calculated the amount of expectation induced 

response benefits as RTbenefit = RTunexpected – RTexpected, and Accuracybenefit = Accuracyexpected 

– Accuracyunexpected. We then averaged across subjects per block as well as calculated 

the within-subject normalized standard error of the mean [85] with bias correction 

[86]. For each block we analyzed the behavioral benefit induced by expectations using 

two-sided, one-sample t-tests, contrasting the observed benefit against zero (no 

benefit). Additionally, we contrasted the obtained RT and accuracy benefits between 

chronologically adjacent blocks using two-sided, paired t-tests. Thus, these tests 

assess whether the expectation benefit changed significantly from one to the other 

block. For all t-tests effect sizes were calculated as Cohen’s dz [84]. 

If a reliable RT benefit was evident, we quantified in an additional analysis the 

magnitude of this RT benefit for each exposure to an expected cue-stimulus pair. 

To this end, we calculated the difference in RT benefit between chronologically 

adjacent blocks, divided by the number of exposures to expected pairs. We separately 

averaged the resulting ‘RT benefit per expected pair’ for those blocks separated by 

blocks with deterministic associations and those without deterministic associations. 

This yields how much participants improved in RT benefit for each exposure to an 

expected depending on whether these exposures took place during deterministic or 

probabilistic blocks. We also calculated the same metric for the first two probabilistic 

blocks separately, as these blocks precede the first deterministic block. This avoids 

the concern that changing probabilities in the underlying statistics, or a ceiling 

effect following learning in deterministic blocks, prevented learning in probabilistic 

blocks. Finally, we compared the obtained RT benefit per expected pair exposure 

against zero for deterministic, probabilistic and the first two probabilistic blocks.

Additionally, if we observed a reliable RT benefit by prediction, we performed an 

analysis in which we tested whether motor response preparations and/or perceptual 

surprise account for the RT benefit. To this end we repeated the analysis of the RT 

benefit per block, as outlined above, but only analyzed unexpected trials which 

required the same response (button press) as the expected stimulus. Thus, in this 

analysis responses to expected and unexpected stimuli are identical in terms of 

the motor response, including potential priming of the button press induced by 

expectation. Hence, only perceptual surprise differed in this analysis between 

expected and unexpected trials.
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Data modelling and model comparisons

In order to assess in more detail how and when expectation effects develop, as well as 

to provide evidence for the possible absence of an expectation effect, we performed 

Bayesian model comparison. For each participant, we modeled the log-transformed 

RTs per trial (t) as drawn from a normal distribution, with a given standard deviation 

(s) and mean (μ). The mean was modeled separately for each block (r) to allow 

for generic improvements in RT over time. RTs were modulated by an effect of 

expectations (∆μ).

yunexp  ~ Normal(μunexp,r,s2 )

yexp (r) ~ Normal(μexp,r,s2 )

s ~ HalfNormal(2×Sobs )

μunexp,r  ~ Normal(x ̅   obs,2×Sobs )

μexp,r ~ μunexp,r- ∆μ(t)

The precise modulation by expectations was modeled according to one of six models:

No effect: responses to expected and unexpected pairs do not differ; i.e., no benefit of 

expectations.

∆μ=0

Constant: responses to expected and unexpected pairs differ by a constant amount.

∆μ ~ Normal(0,2×Sobs)

Linear: differences between expected and unexpected pairs change in a linear, trial-

wise fashion; i.e., modelling a gradual learning process over time.

∆μ(t)=lt

l ~ Normal(0,2×Sobs)

One switchpoint: initially no difference between expected and unexpected pairs 

until a change point occurs, after which conditions differ by a constant amount. Two 

possible switchpoints were fit, either block 3, or block 5, because these blocks follow 

the deterministic blocks, during which learning may particularly occur. Thus, this 

model implements a learning process taking place exclusively in one deterministic 

block.

∆μ(r) ≅ { Normal(0,2×Sobs ), r>y*2+3

y ~ DiscreteUniform(0,1)

0, r≤y*2+3
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Two switchpoints: similar to the one switch points model, but modelling two 

switchpoints, both block 3, and block 5. Thereby this model allows for learning to 

occur during both deterministic blocks.

∆μ(r) = ∆1(r)+ ∆2(r) 

∆1(r) ≅ {Normal(0,2×Sobs ), r>3  

∆2(r) ≅ {Normal(0,2×Sobs ), r>5  

Two switchpoints & linear: maximal model, including both two switchpoints and 

the trial-wise linear effect of expectations. Thus, this model implements a gradual 

learning process, with two additional learning steps during the deterministic blocks.

∆μ(r) = lt+∆1(r)+ ∆2(r)

l ~ Normal(0,2×Sobs) 

∆1(r) ≅ {Normal(0,2×Sobs ), r>3  

∆2(r) ≅ {Normal(0,2×Sobs ), r>5  

Finally, model fit was compared in terms of the Watanabe-Akaike information criterion; 

WAIC [175]. We calculated the median WAIC for each model type, and additionally 

compared average WAIC between model types using Wilcoxon signed-rank tests.

fMRI data preprocessing

fMRI data was preprocessed using FSL 6.0 (FMRIB Software Library; Oxford, UK; www.

fmrib.ox.ac.uk/fsl; [87], RRID:SCR_002823). The following steps were carried out for all 

fMRI data: brain extraction (BET), motion correction (MCFLIRT), temporal high-pass 

filtering (128 seconds), spatial smoothing (Gaussian kernel with full-width at half-

maximum of 5 mm). Functional images were registered to each subject’s anatomical 

image using FSL FLIRT’s boundary-based registration (BBR). Anatomical image were 

linearly registered (12 degrees of freedom) to the MNI152 T1 2mm template.

fMRI data analysis

First level fMRI data analysis was performed using the least squares separate approach 

as outlined in [89,153]. In this analysis a separate voxel-wise general linear model (GLM) 

is fit for each trial, with one regressor of interest, the current trial (onset and duration 

of the regressor corresponding to that of the (un-)expected stimulus). Additionally, 

regressors of no interest are fit, modelling all stimulus classes (minus the current 

0, r≤3

0, r≤3

0, r≤5

0, r≤5
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trial), as well a generic nuisance regressors, including instruction screens and 24 

motion regressors (FSL’s standard + extended set of motion parameters; i.e., 6 standard 

motion parameters, the 6 temporal derivatives, and the squares of the standard 

and temporal derivatives). Stimulus events were convolved with a double gamma 

haemodynamic response function to account for the shape of the haemodynamic 

response. This analysis yields a parameter estimate map of the BOLD response for 

each trial. From these parameter estimate maps we extracted data using three ROI 

masks (V1, LOC, TOFC). Within each ROI, parameter estimates were averaged across 

voxels, thus yielding one parameter estimate for each trial and ROI. Subsequently, 

we modelled the trial-by-trial BOLD response for each subject separately, using 

the same Bayesian modelling procedure used for the RT data (for details see: Data 

modelling). Before Bayesian modelling of BOLD responses, we removed trials with 

incorrect behavioral responses, as well as too fast (< 200 ms) or too slow (> 1500 ms) 

responses. Moreover, for each participant outlier BOLD responses were removed, 

defined as parameter estimates exceeding 3 SD below or above the average parameter 

estimate. Finally, before performing Bayesian modelling, the parameter estimates 

were z-scored. In addition to the trial-wise modelling, we also calculated the average 

amount of expectation suppression (BOLDexpectation suppression = BOLDunexpected – BOLDexpected) 

per block (run). As for behavioral data, we again compared the obtained expectation 

effect against zero (no effect) using two-sided, one-sample t-tests. We also compared 

average expectation suppression between all adjacent blocks using two-sided, paired 

t-tests (for details see: Behavioral data analysis).

In addition to the ROI analyses, we performed a whole-brain analysis, contrasting 

responses to unexpected compared to expected stimuli for the two sessions separately. 

To this end we fit voxel-wise GLMs to each subject’s data using FSL FEAT. For each run 

the model consisted of a regressor for expected and unexpected occurrences of the 

object stimuli. Each stimulus event was modeled with 500 ms duration (presentation 

duration and onset of the object image), and convolved with a double gamma 

haemodynamic response function. Additionally, a regressor of no interest, modelling 

instruction screens was added to the model. Moreover, the temporal derivatives of 

these three regressors were added. Finally, FSL’s standard + extended set of motion 

parameters were added to the model to account for head motion. Across runs data 

was averaged using FSL’s fixed effects analysis within each session. Finally, for 

whole-brain analyses, data was averaged across participants using FSL’s mixed effects 

analysis, FLAME 1. The contrast of interest was unexpected minus expected (yielding 

expectation suppression), averaged across runs within each session, as well as the 

difference in expectation suppression between the sessions. Multiple comparison 

correction was performed using Gaussian random-field cluster thresholding; cluster 

forming threshold p < 0.001 and cluster significance threshold p < 0.05.
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ROI definition

All ROIs were defined a-priori, following a similar procedure as in [145], using 

independent data. In brief, primary visual cortex (V1) masks were individually extracted 

from V1 labels using Freesurfer 6.0 cortex segmentation [97]; RRID:SCR_001847. To 

establish object selective lateral occipital complex (LOC) masks, a GLM was fit to each 

participant’s localizer data, modelling intact and scrambled objects separately, plus 

nuisance regressors for motion and instruction events. Object-selective LOC masks 

were subsequently defined as voxels with significant preferential responses to intact 

objects compared to scrambled objects [95], within anatomically defined LOC (Harvard-

Oxford cortical atlas, as distributed by FSL; RRID:SCR_001476). A default threshold for 

significant preferential responses of z > 5 was used, which was adjusted individually 

if resulting the LOC mask contained less than 300 voxels. The anatomical mask for 

temporal occipital fusiform cortex (TOFC) from the Harvard-Oxford cortical atlas was 

used to define TOFC. This anatomical mask was further constrained to voxels, which 

showed significant expectation suppression in both [113] and [145], thus resulting in a 

TOFC mask, which contains voxels which were previously shown to be sensitive to 

statistical regularities. All three ROI masks were further constraint, for each participant 

individually, to the 300 most active voxels during the localizer run, using the contrast 

intact object compared to baseline (i.e., no visual stimulation). 

Software

For MRI data preprocessing and analysis FSL 6.0 (FMRIB Software Library; Oxford, 

UK; www.fmrib.ox.ac.uk/fsl; [87] RRID:SCR_002823) was used. Additionally, 

custom Python 3.7.4 (Python Software Foundation, RRID:SCR_008394) scripts 

were employed for additional analyses and data visualization, making use of 

NumPy 1.17.2 [98] RRID:SCR_008633, SciPy 1.3.1 [176] RRID:SCR_008058, Matplotlib 

3.1.1 [100] RRID:SCR_008624, Statsmodels 0.10.1 [177], Pandas 0.25.2 [178], PyMC3 3.7 

[179]. Slice Display [102], implemented in Matlab 2017a (The MathWorks, Inc., Natick, 

Massachusetts, United States, RRID:SCR_001622), was used for whole-brain result 

visualization. Experiments were programmed in Presentation® software (version 

20.2, Neurobehavioral Systems, Inc., Berkeley, CA, RRID:SCR_002521).

Data and code availability

Data and code will be made available upon publication in the Donders Repository: 

http://hdl.handle.net/11633/aadhrw2q 
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Supplemental Information

 

FIGURE S5.1  No modulation of sensory processing by cross-modal statistical regularities 
in early visual areas. 

Cross-modal perceptual expectations do not modulate sensory responses in primary visual 
cortex (V1). (A) Displays expectation suppression (BOLDunexpected – BOLDexpected) for each block. 
Again no evidence for an influence of expectation status on sensory processing is evident – 
i.e., expectation suppression is (near) zero in each block for both sessions and, in fact, did 
not statistically deviate from zero for any block. Moreover, expectation suppression did 
not differ between any adjacent blocks. The dashed lines indicates zeros; i.e., no difference 
in the response between expected and unexpected stimuli. Vertical dotted lines indicate 
when a block with deterministic associations took place between the displayed blocks with 
probabilistic associations (i.e., after session 1, block 2 and 4). Error bars indicate within-
subject SEM. White bars indicate first and third quartile ranges. * p < 0.05 (uncorrected 
p-values). (B) BOLD response to expected and unexpected stimuli for each block and session. 
(C) Shows model fits in terms of WAIC. The ‘no effect‘ model outperformed (lower WAIC) 
all other models, suggesting that expectations did not influence sensory processing in V1. 
Vertical lines denote statistically significant differences between WAICs (p < 0.05).  
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FIGURE S5.2  No modulation of sensory processing by cross-modal statistical regularities 
in higher visual areas. 

Cross-modal perceptual expectations do not modulate sensory responses in higher visual 
areas (TOFC). (A) Displays expectation suppression (BOLDunexpected – BOLDexpected) for each block. 
Again no evidence for an influence of expectation status on sensory processing is evident – 
i.e., expectation suppression is (near) zero in each block for both sessions and, in fact, did 
not statistically deviate from zero for any block. Moreover, expectation suppression did 
not differ between any adjacent blocks. The dashed lines indicates zeros; i.e., no difference 
in the response between expected and unexpected stimuli. Vertical dotted lines indicate 
when a block with deterministic associations took place between the displayed blocks with 
probabilistic associations (i.e., after session 1, block 2 and 4). Error bars indicate within-
subject SEM. White bars indicate first and third quartile ranges. (B) BOLD response to expected 
and unexpected stimuli for each block and session. (C) Shows model fits in terms of WAIC. The 
‘no effect‘ model outperformed (lower WAIC) all other models, suggesting that expectations 
did not influence sensory processing in TOFC. Vertical lines denote statistically significant 
differences between WAICs (p < 0.05). 
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TABLE S5.1  Model comparison for RT effects during cross-modal SL with task-irrelevant cues. 

Results of all pair-wise Wilcoxon signed-rank tests comparing model WAICs. SP = switchpoint. 
Redundant information omitted.

Model

2 SP 1 SP Linear Constant No effect

M
od

el

2 SP & 
linear

W=85 
p=0.063

W=25 
p=4e-04

W=36 
p=0.001

W=32 
p=7e-04

W=18 
p=2e-04

2 SP -
W=3 
p=3e-05

W=29 
p=5e-04

W=26 
p=4e-04

W=42 
p=0.002

1 SP - -
W=116 
p=0.331

W=108 
p=0.23

W=82 
p=0.052

Linear - - -
W=149 
p=0.977

W=77 
p=0.037

Constant - - - -
W=60 
p=0.01

TABLE S5.2  Results of statistical tests evaluating RT and response accuracy benefits during 
cross-modal SL with task-irrelevant cues. 

(A) Results of one-sample t-tests comparing the observed RT benefit for each block against 
zero (no expectation benefit). Positive effects indicate RT benefits. (B) Results of paired-
sample t-tests comparing the RT benefit between chronologically adjacent blocks. Positive 
effects indicate that RT benefits increased from one to the other block. (C) and (D) show the 
corresponding results for response accuracy. All presented p-values are uncorrected. Effect 
sizes are reported in terms of Cohen’s d.

A B

RT benefit per block against zero RT benefits between sequential blocks

Block 1: t(23)=-1.26 p=0.219 d=-0.26 Block 1 vs 2: t(23)=0.24 p=0.815 d=0.05

Block 2: t(23)=-0.84 p=0.408 d=-0.17 Block 2 vs 3: t(23)=1.82 p=0.081 d=0.37

Block 3: t(23)=1.73 p=0.098 d=0.35 Block 3 vs 4: t(23)=-1.45 p=0.161 d=-0.3

Block 4: t(23)=-0.13 p=0.900 d=-0.03 Block 4 vs 5: t(23)=0.85 p=0.404 d=0.17

Block 5: t(23)=0.9 p=0.377 d=0.18 Block 5 vs 6: t(23)=1.96 p=0.062 d=0.4

Block 6: t(23)=3.15 p=0.004 d=0.64 Block 6 vs 7: t(23)=-1.75 p=0.093 d=-0.36

Block 7: t(23)=0.69 p=0.497 d=0.14 Block 7 vs 8: t(23)=-0.12 p=0.903 d=-0.03

Block 8: t(23)=1.2 p=0.243 d=0.24

C D

Accuracy benefit per block against zero Accuracy benefits between sequential blocks

Block 1: t(23)=-0.73 p=0.470 d=-0.15 Block 1 vs 2: t(23)=0.69 p=0.494 d=0.14

Block 2: t(23)=0.19 p=0.854 d=0.04 Block 2 vs 3: t(23)=-0.29 p=0.777 d=-0.06

Block 3: t(23)=-0.21 p=0.837 d=-0.04 Block 3 vs 4: t(23)=0.52 p=0.607 d=0.11

Block 4: t(23)=0.6 p=0.557 d=0.12 Block 4 vs 5: t(23)=0.6 p=0.557 d=0.12

Block 5: t(23)=1.28 p=0.214 d=0.26 Block 5 vs 6: t(23)=0.67 p=0.510 d=0.14

Block 6: t(23)=2.11 p=0.046 d=0.43 Block 6 vs 7: t(23)=-0.87 p=0.394 d=-0.18

Block 7: t(23)=0.97 p=0.342 d=0.2 Block 7 vs 8: t(23)=-0.64 p=0.529 d=-0.13

Block 8: t(23)=-0.06 p=0.954 d=-0.01
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TABLE S5.3  Model comparison for expectation suppression (BOLD) effects during cross-
modal SL with task-irrelevant cues. 

Results of all pair-wise Wilcoxon signed-rank tests comparing model WAICs. SP = switchpoint. 
Redundant information omitted.

Model

2 SP 1 SP Linear Constant No effect

M
od

el

2 SP & 
linear

W=33
p=0.002

W=30 
p=0.002

W=23 
p=8e-04

W=26 
p=0.001

W=27 
p=0.001

2 SP -
W=74 
p=0.088

W=72 
p=0.077

W=62 
p=0.036

W=40 
p=0.005

1 SP - -
W=126 
p=0.987

W=107 
p=0.527

W=48 
p=0.011

Linear - - -
W=111 
p=0.615

W=58 
p=0.026

Constant - - - -
W=63 
p=0.039

TABLE S5.4  Results of statistical tests evaluating expectation suppression during cross-
modal SL with task-irrelevant cues. 

(A) Results of one-sample t-tests comparing expectation suppression (BOLDunexpected – 
BOLDexpected) for each block (run) against zero (no expectation effect on BOLD). Positive effects 
would indicate expectation suppression. (B) Results of paired-sample t-tests comparing 
expectation suppression between chronologically adjacent blocks. Positive effects would 
indicate that expectation suppression increased from one to the other block. All presented 
p-values are uncorrected. Effect sizes are reported in terms of Cohen’s d.

A B

Expectation suppression per block against zero Expectation suppression between sequential blocks

Block 1: t(21)=-1.03 p=0.314 d=-0.22 Block 1 vs 2: t(21)=0.1 p=0.923 d=0.02

Block 2: t(21)=-1.01 p=0.325 d=-0.22 Block 2 vs 3: t(21)=0.58 p=0.568 d=0.12

Block 3: t(21)=-0.0 p=0.997 d=-0.0 Block 3 vs 4: t(21)=0.15 p=0.884 d=0.03

Block 4: t(21)=0.26 p=0.798 d=0.06 Block 4 vs 5: t(21)=-0.22 p=0.829 d=-0.05

Block 5: t(21)=-0.04 p=0.966 d=-0.01 Block 5 vs 6: t(21)=-1.99 p=0.059 d=-0.43

Block 6: t(21)=-2.54 p=0.019 d=-0.54 Block 6 vs 7: t(21)=1.94 p=0.066 d=0.41

Block 7: t(21)=0.19 p=0.851 d=0.04 Block 7 vs 8: t(21)=-0.49 p=0.631 d=-0.1

Block 8: t(21)=-0.64 p=0.53 d=-0.14
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TABLE S5.5  Model comparison for RT effects during cross-modal SL with task-relevant cues. 

Results of all pair-wise Wilcoxon signed-rank tests comparing model WAICs. SP = switchpoint. 
Redundant information omitted.

Model

2 SP 1 SP Linear Constant No effect

M
od

el

2 SP & 
linear

W=129
p=0.784

W=61
p=0.019

W=70
p=0.039

W=74
p=0.052

W=89
p=0.136

2 SP -
W=12
p=1e-04

W=31
p=0.001

W=41
p=0.003

W=97
p=0.212

1 SP - -
W=113
p=0.447

W=134
p=0.903

W=127
p=0.738

Linear - - -
W=128
p=0.761

W=135
p=0.927

Constant - - - -
W=134
p=0.903

TABLE S5.6  Results of statistical tests evaluating RT and response accuracy benefits during 
cross-modal SL with task-relevant cues. 

(A) Results of one-sample t-tests comparing the observed RT benefit for each block against 
zero (no expectation benefit). Positive effects indicate RT benefits. (B) Results of paired-
sample t-tests comparing the RT benefit between chronologically adjacent blocks. Positive 
effects indicate that RT benefits increased from one to the other block. (C) and (D), show the 
corresponding results for response accuracy. All presented p-values are uncorrected. Effect 
sizes are reported in terms of Cohen’s d.

A B

RT benefit per block against zero RT benefits between sequential blocks

Block 1: t(22)=-0.35 p=0.729 d=-0.07 Block 1 vs 2: t(22)=-0.41 p=0.683 d=-0.09

Block 2: t(22)=-0.68 p=0.501 d=-0.14 Block 2 vs 3: t(22)=2.05 p=0.052 d=0.43

Block 3: t(22)=1.81 p=0.084 d=0.38 Block 3 vs 4: t(22)=-1.46 p=0.158 d=-0.31

Block 4: t(22)=-0.07 p=0.944 d=-0.01 Block 4 vs 5: t(22)=1.97 p=0.062 d=0.41

Block 5: t(22)=1.82 p=0.083 d=0.38 Block 5 vs 6: t(22)=-0.27 p=0.789 d=-0.06

Block 6: t(22)=2.64 p=0.015 d=0.55 Block 6 vs 7: t(22)=-0.69 p=0.495 d=-0.14

Block 7: t(22)=1.41 p=0.172 d=0.29 Block 7 vs 8: t(22)=0.53 p=0.598 d=0.11

Block 8: t(22)=1.5 p=0.147 d=0.31

C D

Accuracy benefit per block against zero Accuracy benefits between sequential blocks

Block 1: t(22)=-0.27 p=0.787 d=-0.06 Block 1 vs 2: t(22)=0.1 p=0.925 d=0.02

Block 2: t(22)=-0.18 p=0.862 d=-0.04 Block 2 vs 3: t(22)=0.18 p=0.859 d=0.04

Block 3: t(22)=0.06 p=0.951 d=0.01 Block 3 vs 4: t(22)=-0.34 p=0.735 d=-0.07

Block 4: t(22)=-0.43 p=0.673 d=-0.09 Block 4 vs 5: t(22)=1.81 p=0.084 d=0.38

Block 5: t(22)=2.72 p=0.013 d=0.57 Block 5 vs 6: t(22)=-1.19 p=0.245 d=-0.25

Block 6: t(22)=0.55 p=0.585 d=0.12 Block 6 vs 7: t(22)=-0.13 p=0.897 d=-0.03

Block 7: t(22)=0.43 p=0.673 d=0.09 Block 7 vs 8: t(22)=-0.24 p=0.809 d=-0.05

Block 8: t(22)=0.05 p=0.958 d=0.01
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INCIDENTAL STATISTICAL LEARNING OF UNIMODAL BUT NOT CROSS-MODAL STATISTICAL REGULARITIES

TABLE S5.7  Model comparison for RT effects during unimodal SL with task-irrelevant cues. 

Results of all pair-wise Wilcoxon signed-rank tests comparing model WAICs. SP = switchpoint. 
Redundant information omitted.

Model

2 SP 1 SP Linear Constant No effect

M
od

el

2 SP & 
linear

W=34
p=5e-04

W=61
p=0.006

W=146
p=0.657

W=157
p=0.882

W=75
p=0.019

2 SP -
W=102
p=0.104

W=152
p=0.778

W=125
p=0.313

W=26
p=2e-04

1 SP - -
W=88
p=0.045

W=83
p=0.032

W=10
p=4e-05

Linear - - -
W=112
p=0.174

W=14
p=6e-05

Constant - - - -
W=32
p=4e-04

TABLE S5.8  Results of statistical tests evaluating RT and response accuracy benefits during 
unimodal SL with task-irrelevant cues. 

(A) Results of one-sample t-tests comparing the observed RT benefit for each block against 
zero (no expectation benefit). Positive effects indicate RT benefits. (B) Results of paired-
sample t-tests comparing the RT benefit between chronologically adjacent blocks. Positive 
effects indicate that RT benefits increased from one to the other block. (C) and (D) show the 
corresponding results for response accuracy. (E) Results of one-sample t-tests comparing 
RT benefits for each block against zero, including only expected trials and unexpected trials 
requiring the same button press as the expected object. (F) Paired-sample t-test results 
comparing RT benefits between adjacent blocks, again only including unexpected trials with 
the same response as the expected stimulus would have required. All presented p-values are 
uncorrected. Effect sizes are reported in terms of Cohen’s d.

A B

RT benefit per block against zero RT benefits between sequential blocks

Block 1: t(24)=1.52 p=0.142 d=0.3 Block 1 vs 2: t(24)=-0.19 p=0.854 d=-0.04

Block 2: t(24)=0.9 p=0.379 d=0.18 Block 2 vs 3: t(24)=3.95 p=6e-04 d=0.79

Block 3: t(24)=5.31 p=2e-05 d=1.06 Block 3 vs 4: t(24)=-1.77 p=0.089 d=-0.35

Block 4: t(24)=4.17 p=3e-04 d=0.83 Block 4 vs 5: t(24)=4.09 p=4e-04 d=0.82

Block 5: t(24)=9.23 p=2e-09 d=1.85 Block 5 vs 6: t(24)=-2.99 p=0.006 d=-0.6

Block 6: t(24)=5.72 p=7e-06 d=1.14 Block 6 vs 7: t(24)=1.5 p=0.146 d=0.3

Block 7: t(24)=6.48 p=1e-06 d=1.3 Block 7 vs 8: t(24)=-1.13 p=0.270 d=-0.23

Block 8: t(24)=6.7 p=6e-07 d=1.34
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C D

Accuracy benefit per block against zero Accuracy benefits between sequential blocks

Block 1: t(24)=-0.8 p=0.431 d=-0.16 Block 1 vs 2: t(24)=1.47 p=0.155 d=0.29

Block 2: t(24)=0.69 p=0.498 d=0.14 Block 2 vs 3: t(24)=1.56 p=0.132 d=0.31

Block 3: t(24)=2.17 p=0.040 d=0.43 Block 3 vs 4: t(24)=-1.54 p=0.137 d=-0.31

Block 4: t(24)=0.46 p=0.646 d=0.09 Block 4 vs 5: t(24)=2.2 p=0.037 d=0.44

Block 5: t(24)=3.13 p=0.005 d=0.63 Block 5 vs 6: t(24)=-0.22 p=0.825 d=-0.04

Block 6: t(24)=3.28 p=0.003 d=0.66 Block 6 vs 7: t(24)=-2.15 p=0.042 d=-0.43

Block 7: t(24)=0.36 p=0.725 d=0.07 Block 7 vs 8: t(24)=1.47 p=0.155 d=0.29

Block 8: t(24)=2.68 p=0.013 d=0.54

E F

RT benefit per block against zero (only 
same response trials)

RT benefits between sequential blocks (only 
same response trials)

Block 1: t(24)=1.12 p=0.275 d=0.22 Block 1 vs 2: t(24)=-0.6 p=0.554 d=-0.12

Block 2: t(24)=0.28 p=0.782 d=0.06 Block 2 vs 3: t(24)=1.56 p=0.131 d=0.31

Block 3: t(24)=2.23 p=0.035 d=0.45 Block 3 vs 4: t(24)=-0.61 p=0.546 d=-0.12

Block 4: t(24)=1.56 p=0.132 d=0.31 Block 4 vs 5: t(24)=2.48 p=0.020 d=0.50

Block 5: t(24)=5.41 p=1e-05 d=1.08 Block 5 vs 6: t(24)=-1.93 p=0.066 d=-0.39

Block 6: t(24)=2.64 p=0.015 d=0.53 Block 6 vs 7: t(24)=0.92 p=0.369 d=0.18

Block 7: t(24)=3.42 p=0.002 d=0.68 Block 7 vs 8: t(24)=-1.23 p=0.231 d=-0.25

Block 8: t(24)=2.82 p=0.010 d=0.56
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In Figure 1.1A of the introduction you were confronted with an initially unintelligible, 

ambiguous stimulus. The subsequent expectation to see a cat in the stimulus likely 

resolved the ambiguity, phenomenologically demonstrating that expectations 

can shape perception. Throughout this thesis I have asked the question, how 

expectations modulate perceptual processing, and whether this modulation may 

constitute a general operating principle of the sensory brain. In several experiments 

I used incidental statistical learning, the unsupervised extraction of statistical 

regularities from the environment across time and space [46–48], to induce perceptual 

expectations. As a consequence we saw an attenuated sensory response to expected 

compared to unexpected stimuli throughout the ventral visual stream, also known 

as expectation suppression (chapters 2-3; [19,20]). In the following discussion I will 

attempt to answer key questions, raised in the introduction. 

First, I will discuss whether the here presented evidence supports the proposition 

that predictions are a fundamental principle of sensory processing. In this context, 

I will review how wide-spread and task-independent expectation suppression is. 

Additionally, I will discuss the feature-specificity of complex object predictions 

across different levels of the visual processing hierarchy, thereby exploring the 

properties of expectation suppression in more detail. Next, I will revisit the limits of 

statistical learning and the automaticity of its sensory consequences, thereby further 

characterizing the underlying neural mechanism by placing important constrains 

on its ubiquity and automaticity. Furthermore, I will evaluate an alternative account, 

casting expectation suppression as an effect of attention instead of prediction, which 

fundamentally questions prediction error coding in sensory cortex. Then, I will briefly 

discuss whether expectation suppression reflects a suppression of neural responses 

or an enhanced response to surprising input. Before concluding, I will further explore 

the neural modulation underlying expectation suppression by reviewing when 

expectations may sharpen or dampen neural representations. Finally, I will conclude 

with a condensed synthesis of the results presented here and the wider literature, 

demonstrating how perception is fundamentally influenced by expectations.

Statistical learning and expectation suppression

In the introduction of my thesis, I raised the question whether prediction constitutes 

a fundamental operating principle of the sensory brain. I proposed several 

characteristics this supposition may entail. First, if prediction is a core principle 

of sensory processing, its effect should be evident across the visual hierarchy. In 

chapter 2 and 3, I reported expectation suppression, an attenuated sensory responses 

to expected compared to unexpected stimuli, throughout the ventral visual stream. 

Thus, expectations appear to modulate sensory processing from early to late stages 
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of the cortical visual hierarchy, including key processing areas such as primary visual 

cortex (V1), object selective lateral occipital cortex (LOC), and temporal occipital 

fusiform cortex (TOFC). Second, the sensory consequences of prediction should 

be evident for predictions of stimuli that are common and behaviorally relevant in 

everyday life (e.g., objects). Accordingly, I demonstrated that complex associations 

between arbitrarily paired objects can be learned incidentally (chapters 2-5) and 

subsequently modulate sensory processing (chapters 2-4), thus further supporting 

the ubiquity of predictions in shaping perception. Third, sensory modulations should 

arise without intention to learn or to use the underlying predictions. Indeed, once 

acquired, perceptual predictions appear to affect neural processing irrespective of 

whether the specific priors are task-relevant (chapter 3) or task-irrelevant (chapter 2), 

thereby suggesting that predictions modulate perception even without any intention 

or behavioral benefit to predict. Moreover, it is worth noting that while the effects of 

priors tend to be stronger when stimuli are noisy (review: [19]), the prediction induced 

modulations observed here were evident even though unambiguous stimuli were 

presented without additional noise, thus further supporting the pervasiveness of 

prediction induced modulations of sensory processing.

These results corroborate and extent previously reported sensory suppression 

for simple, possibly explicitly learned predictions [18,24,25,28], by demonstrating 

that complex perceptual priors, such as associations between arbitrarily paired 

naturalistic object images, can be extracted incidentally and subsequently suppress 

sensory responses throughout the ventral visual stream. Moreover, these results 

also align with data from non-human primates, demonstrating expectation 

suppression in terms of spike rates, following incidental statistical learning of 

complex associations during passive exposure [23,26,27]. Thus, my results also 

bridge a gap between studies in non-human primates and human volunteers by 

demonstrating comparable suppression of sensory responses using experimental 

paradigms based on studies in non-human primates. Combined with prior studies, 

the available evidence therefore supports the hypothesis that prediction constitutes 

a general operational principle of sensory processing [12,19,30], evident for simple and 

complex associations, affecting responses across the ventral visual stream, following 

intentional and incidental statistical learning (chapters 2-5; [18,23–28]). Expectation 

suppression thus appears to be a pervasive and general neural phenomenon [19]. But, 

how can we account for this mismatch response? In chapters 2 and 3, I argued for an 

interpretation of expectation suppression in line with predictive coding accounts [11–

13], as reflecting smaller prediction errors for stimuli conforming to prior expectations 

compared to unexpected stimuli. Next, I will discuss what the present results imply 

for the characteristics of prediction errors across the visual hierarchy.
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Feature-specific and feature-unspecific prediction (errors) across 
the ventral visual stream

Hierarchical predictive coding [12] suggests that predictions and prediction error 

calculations occur iteratively at every level of the sensory hierarchy. However, as 

noted in the introduction, this raises the question how feature-specific predictions, 

and consequently prediction error calculations, are at the different levels of the visual 

hierarchy. In other words, do complex predictions, such as expected faces or objects, 

translate into feature-specific predictions at the level of V1, such as local contrasts 

and orientations?

My results from chapters 2-4 speak to these questions. In each study I manipulated 

predictions of object images and subsequently showed expectation suppression 

throughout the ventral visual stream. Thus, on first sight these results suggest that 

complex object predictions are relayed down the visual hierarchy such that prediction 

errors arise at the early and late levels in visual cortex. However, in chapter 2 and 3 I 

also showed that stimulus-driven and non-stimulus-driven voxels in V1 are equally 

suppressed by expectations. This suggests that expectation suppression in early 

visual cortex may be stimulus-unspecific, as voxels (neural populations) appear 

to be suppressed irrespective of their responsiveness to a stimulus. Moreover, in 

chapter 4 I moved beyond the voxel level, using forward models, and demonstrated 

that expectation suppression in early visual cortex was best explained by a feature-

unspecific global gain modulation of neural responses. In other words, expectation 

suppression appears to affect neural populations equally in V1, irrespective of feature 

tuning (chapter 4) and stimulus responsiveness (chapters 2 and 3). In contrast, in 

higher visual areas, including object-selective LOC and TOFC, I did demonstrate 

stimulus-specific and feature-specific expectation suppression (chapters 2-4). 

Based on these results one can speculate that two partially distinct mechanism may 

underlie expectation suppression. One mechanism is feature-specific, and may 

directly reflect the hypothesized prediction error signals [15] in line with hierarchical 

predictive coding [12]. This prediction error computation may underlie the detection of 

prediction violations. The second mechanism is feature-unspecific, and may reflect 

the consequence of the previous prediction error computation in higher visual areas, 

but not constitute a cause for the detection of the expectation violation itself. That is, 

detecting an expected stimulus depends on feature-specificity, because specific stimuli 

were predicted in chapters 2-4. Hence, a feature-unspecific modulation is unlikely to 

reflect a cause, but merely a consequence of the prediction (dis-)confirmation. 

What mechanism may underlie this feature-unspecific suppression? One can 

speculate that feature-unspecific suppression may reflect arousal and attention 
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disengagement from the expected stimuli. That is, if a stimulus is well-predicted 

no new information is gained, hence attention may be disengaged, resulting in less 

weight on the ascending prediction error units [16]. As this disengagement is not 

specific to any stimulus features (e.g. spatial attention may disengage from the whole 

stimulus area) all signals in prediction error units might be reduced, thus resulting 

in the observed unspecific suppression. This interpretation is supported in chapter 

3 by enhanced pupil dilations in response to unexpected stimuli, which in turn have 

been associated with signifying arousal changes [115,116]. Indeed, pupil dilation and 

expectation suppression magnitude in V1 were correlated. Thus, feature-unspecific 

expectation suppression may reflect global changes, such as fluctuations in arousal 

and general attention disengagement from well-predicted stimuli.

Curiously, predictions capitalizing on neural tunings in V1, such as orientation 

predictions of grating stimuli, do result in feature-specific prediction effects in 

early visual areas [18,136]. Thus, the lack of feature-specificity observed here, does not 

constitute a general limitation of V1. Rather, combined these results suggest that 

the type of prediction determines where stimulus-specific prediction (error) signals 

emerge. That is, if an object is predicted, the whole object and its large scale features, 

such as its shape appear to be predicted, thereby accounting for the feature-specific 

suppression in object-selective visual areas. However, specific low level features, 

such as local contrasts, are not necessarily predicted, thus resulting in unspecific 

expectation suppression in V1. In contrast, stimuli whose primary predicted feature 

is orientation (e.g. a grating stimulus) do evoke feature-specific predictions in early 

visual cortex [18,136]. Thus, these results suggest a remarkable flexibility of the visual 

system, with the localization of feature-specific expectation suppression dependent 

on the type of prediction. 

In sum, two separate mechanisms may underlie expectation suppression. One, 

feature-specific ‘true’ prediction error computation, here shown in higher visual 

areas, and one feature-unspecific global arousal or attention signal, likely reflecting a 

consequence of the preceding prediction error computation. This hypothesis predicts 

differences in the time courses for feature-specific and feature-unspecific expectation 

suppression, which future research could investigate using neuroimaging methods 

with high temporal resolution, such as magnetoencephalography. That is, if feature-

unspecific expectation suppression does reflect a consequence of feature-specific 

prediction errors, the here observed feature-specific suppression should precede the 

unspecific modulations in early visual cortex. Finally, these results also caution that 

superficially similar expectation suppression may not necessarily represent the same 

underlying neural mechanism, thus suggesting that the consequences of prediction 

can be multifaceted across the ventral visual stream.
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Limits of incidental statistical learning and the gating of its sensory 
consequences by attention

Thus far I have primarily discussed evidence for the wide-spread influence of 

expectations on sensory processing. However, the work presented in this thesis 

also shines light on crucial limitations of both the learning process and the sensory 

consequences of statistical learning, thereby constraining the ubiquity and 

automaticity of sensory modulations by predictions.

Chapter 3 showed that attention may gate the sensory consequences of statistical 

learning. In particular, only when stimuli were attended modulations by expectations 

were found. These results complement another study, showing that pupils are dilated 

following surprising input, but only if the stimuli were attended [180]. The precise 

nature of this gating by attention remains to be investigated further, but one can 

speculate that it may be tied to the generation or modulation of the prior [114]. For 

example, flexibly gating the generation of predictions, such that unattended stimuli 

do not necessarily instantiate predictions, may conserve processing resources. 

However, also note that similar attention gating may not generalize to all types of 

sensory priors. That is, simpler, more fundamental priors, such as perceptual fill-in 

during the Kanizsa illusion, may modulate processing also for unattended stimuli 

[127]. Moreover, as previously seen, predictions do arise from task-irrelevant priors 

(chapter 2). Therefore, at least for the complex sensory priors investigated here, the 

consequences of statistical learning appear to be limited to attended stimuli (chapter 

3), but not necessarily task-relevant predictions (chapter 2). Thus, while perceptual 

inference is largely an unconscious process, with priors influencing perception 

irrespective of intentional usage or general utility of a prediction, not all modulations 

by expectations are necessarily pre-attentive. 

I additionally demonstrated limits of statistical learning, the process by which 

priors are extracted from statistical regularities. In chapter 5, statistical learning 

was evident for unimodal, but not cross-modal statistical regularities, thereby 

implying crucial modality-specific contributions to statistical learning. Indeed, 

such results suggest that the incidental formation of perceptual priors may depend 

on modulations within the sensory processing streams, such as local changes in 

synaptic efficacy [12,112]. On the other hand, cross-modal learning likely depends on 

the integration of information across sensory streams and multisensory areas. It is 

plausible that such long-distance integration may require broadcasting of associated 

stimulus representations into a domain general network [63], or global neuronal 

workspace [173,174]. This hypothesis suggests that the acquisition of cross-modal 

regularities may depend more on intentional learning, while unimodal learning can 
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occur incidentally. Additionally, learning was only evident for deterministic, but 

not probabilistic associations, questioning the frequently proposed reliability and 

rapidity of learning from statistical regularities [46,47]. While more worked is required 

to assess how sensitive humans are to statistical regularities, the present results do 

suggest limits, both in terms of cross-modal learning and probabilistic learning, at 

least during the incidental acquisition of regularities. Whether these limitations are 

specific to incidental compared to intentional statistical learning poses an intriguing 

avenue for future research. For instance, one can speculate that incidental statistical 

learning strongly depends on local changes within sensory areas, while intentional 

learning may recruit (sub-)cortical areas associated with other types of memory 

formation, such as episodic memory, hence posing alternative routes towards the 

acquisition of statistical regularities [19]. Moreover, whether the sensory consequences 

of these two routes towards learning overlap remains to be investigated as well.

In sum, while statistical learning can indeed operate incidentally across different 

contexts, task-demands, and stimuli (chapters 2, 3 and 5; reviews: [46–49]), the 

automaticity, reliably and rapidity of learning, as well as its generalization 

across modalities, may be less robust than previously thought (chapter 5). While 

communalities are evident across different studies employing statistical learning 

(e.g., expectation suppression and behavioral facilitation), it is crucial to note that, 

because of the broad definition of statistical learning, different results in learning 

might be expected. Therefore, I believe that it is important for future studies of 

statistical learning to adequately define what type of learning is investigated, as well 

as how the consequences of learning are assessed. Crucial distinctions may include 

unimodal vs. cross-modal statistical regularities, incidental vs. intentional learning, 

the reliability of the underlying associations, and explicit vs. implicit knowledge of 

the regularities.

Prediction vs attention based accounts of expectation suppression

Up to this point I have shown that incidental statistical learning can serve as a basis 

for generating expectations to guide perception, but also highlighted crucial limits to 

the automaticity and ubiquity of statistical learning and its sensory consequences. 

Moreover, I have demonstrated that expectation suppression is evident across 

the ventral visual stream, thereby suggesting that this phenomenon may reflect a 

general operating principle of the brain. Throughout this thesis, I have argued that 

expectation suppression may reflect sensory prediction errors, in line with predictive 

processing accounts [11–13]. Next, I will discuss an alternative account, casting 

expectation suppression as a direct effect of attention, and contrast it to the here 

prevalent prediction based account. Evaluating this attention based explanation is 
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important, as a central question of this thesis is how expectations modulate sensory 

processing. This question critically entails whether expectation suppression does 

reflect prediction errors or modulations by attention. First, I will introduce the 

attention based account and then review empirical evidence which supports and 

challenges it. 

Attention account

The attention account, as summarized by Alink and Blank [40], starts by noting that 

surprise has been shown to attract attention [35–37]. A functional explanation for 

this observation is that stimuli which are not well-predicted by internal models are 

potentially valuable sources of information and may require important adjustments 

to behavior. If surprise attracts attention, unexpected stimuli will be attended more 

than expected ones. Given that attention modulates the gain of neural responses [38,39], 

this disproportionate allocation of attention towards unexpected stimuli will appear 

as expectation suppression, when responses to unexpected and expected stimuli 

are contrasted as in chapters 2-3. Crucially, this account does not require any direct 

modulation of sensory responses by expectations, thereby questioning the coding 

of prediction errors in sensory cortex in favor of a gain modulation by attention. An 

attention based account also explains the results in chapter 3 by proposing that when 

attention is directed towards the unpredictable alphanumeric characters, surprise 

elicited by the predictable, but task-irrelevant object stimuli would not result in a 

reallocation of attention, because these stimuli are behaviorally irrelevant. Thereby, 

this account elegantly explains expectation suppression with well-known gain 

modulations by attention [38,39], and the absence of expectation suppression when 

objects are unattended by a lack of behavioral relevance. 

Challenges for the attention based account

Task-irrelevant predictions. A core feature of the attention based explanation [40] is 

that unexpected stimuli are particularly relevant for behavior, as they may require 

modifications to our responses. This contention justifies the automatic capture of 

attention by surprising stimuli [35–37]. However, expectation suppression has also 

been observed during exposure to task-irrelevant predictions (e.g., chapter 2; [32,113]) 

and during passive fixation [23,26,27]. Therefore, the attention based account would 

have to assert that surprise always attracts attention, irrespective of the behavioral 

relevance of the stimuli. While this extension is certainly plausible, it complicates 

the explanation why diverting attention away from the predictable stimuli abolishes 

attentional capture entirely (chapter 3), because relying on behavioral relevance alone 

cannot account for the results of chapters 2 and 3 combined. In contrast, prediction 
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based accounts inherently accommodate predictions for task-relevant and task-

irrelevant priors, as expectation and behavioral relevance, the latter being related to 

attention, are considered to be separate influences on sensory processing [12,16].

Surprise calculations. While the attention based account can explain the observed 

gain modulations in sensory cortex without positing prediction error calculations 

within sensory areas, it does nonetheless require a computation of surprise elsewhere 

in cortex. Following this surprise calculation, attention would be reallocated, if a 

stimulus was surprising. Thus, two separate mechanisms are required to account 

for the observed expectation suppression phenomenon: a surprise calculation 

and a subsequent attention allocation resulting in the observed gain modulation. 

In comparison, predictive processing accounts explain the observed expectation 

suppression effects by proposing that prediction errors are computed at each stage of 

the visual hierarchy, directly reflecting the mismatch between top-down predictions 

and bottom-up inputs [11–13]. Hence, on the prediction account no additional 

mechanism for the detection of surprise is required. 

Omission responses and pre-stimulus templates. Finally, previous studies 

demonstrated that neural responses to omissions of expected stimuli can carry 

stimulus-specific information [181] and that expectations can induce sensory 

templates before stimulus onset [182]. In other words, pre-stimulus expectation 

effects, and unexpected stimulus omissions, suggest that predictions can modulate 

sensory responses in a stimulus-specific fashion even in the absence of a stimulus. 

A prediction based account explains such pre-stimulus effects by prospective 

prediction and subsequent prediction errors due to unexpected stimulus omission 

[183,184]. In contrast, on an attention based account it is difficult to accommodate 

omission and pre-stimulus responses, particularly feature-specific ones, because 

attention allocation is proposed to occur after a stimulus has been evaluated to be 

surprising.

Prediction based explanations are more parsimonious 

In sum, the attention based account is challenged by task-irrelevant predictions 

yielding expectation suppression (chapter 2; [32,113]), as well as by omission and pre-

stimulus effects of predictions [181,182,184]. Moreover, the necessity of proposing an 

additional surprise calculation elsewhere in cortex makes the attention account 

more complex. Thus, while the currently available data does not conclusively rule out 

either account, it does appear that a prediction based explanation, along the lines of 

predictive coding, does explain the results reported in chapters 2-4, as well as in the 

wider literature (e.g., [23,26,27,32,143,181,182,184]) in a more parsimonious fashion. However, 
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as argued by Alink and Blank [40], both explanations should be considered in future 

studies, and ideally explicitly plotted against one another. For example, the attention 

based account holds that a prediction error calculation, likely computed outside of 

sensory cortex, has to occur before subsequent attention allocation. In contrast, on 

a prediction based account, expectation suppression does directly reflect prediction 

error computation in sensory areas. Hence, the two accounts make different 

predictions whether a prediction error computation outside of sensory cortex is 

necessary before any modulations in sensory areas are evident. Thus, future work 

could specifically target the distinct localizations and time courses for prediction 

error computations and sensory modulations predicted by the two accounts. 

Expectation suppression vs. surprise enhancement

Another question which frequently arises when discussing expectation suppression 

is whether it does constitute a suppression of neural responses to expected stimuli, 

or in fact an enhanced response to surprising stimuli. The data I have presented 

throughout this thesis do not directly speak to this question, as I compared only 

responses to expected and unexpected stimuli, without any expectation-free, neutral 

stimuli. That said, it is worth elaborating on this question. First, what could a neutral 

stimulus be in order to serve as an expectation-free reference? We could propose 

that a previously unseen stimulus does not involve any expectations. However, an 

unfamiliar stimulus is in fact very surprising and results in a significantly upregulated 

sensory response [185]. Alternatively, in an experiment similar to those reported here 

(chapters 2-5), we could suggest that a stimulus which follows all leading stimuli 

equally often could serve as a neutral stimulus. However, such a stimulus is clearly 

not expectation-free either, but rather the conditional probability is simply lower 

than for expected stimuli, and higher than for unexpected stimuli. Assuming we 

would observe expectation suppression following the probability of these stimuli 

(i.e., BOLDunexpected > BOLDneutral > BOLDexpected, which is plausible given previous work 

[108]), we would still not know whether we see a suppression of the neutral stimuli 

relative to unexpected ones, or an enhanced response to unexpected stimuli relative 

to neutral ones. In other words, expectations are relative, only defined by the relative 

probability of the different possible outcomes. Therefore, arguably there is no 

‘absolute’ neutral stimulus against which to compare whether expectations induce 

a suppression, or surprise enhances responses. Therefore, while the question of 

expectation suppression vs. surprise enhancement may initially sound relevant, 

it may not reflect any meaningful properties of the underlying neural modulation. 

That said, above I have argued that expectation suppression may be best explained by 

prediction error computations. Given that on a predictive coding account predictions 

explain away bottom-up activity, the term expectation suppression appears to more 
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accurately reflect our current understanding of the neural modulations underlying 

perceptual predictions.

Dampening vs. sharpening of neural representations

After establishing that expectation suppression is wide-spread throughout sensory 

cortex and reaffirming that it likely reflects prediction error calculations, I will now 

turn towards the question of what type of neural modulation underlies expectation 

suppression. That is, even if we assume that expectation suppression indeed reflects 

prediction errors, as argued above and throughout this thesis, we still do not know 

how and what neural responses are suppressed by expectations. Two leading 

accounts of expectation suppression, debated in the literature [19] and outlined in the 

introduction, are a sharpening and dampening of the population representation. 

To recapitulate, using conventional fMRI analyses (chapter 2) and forward models 

(chapter 4), I provided evidence that perceptual expectations dampen sensory 

representations by suppressing neurons tuned towards expected stimulus features. 

These results are in agreement with previous studies [23,43,79,143], and suggest that 

expectations reduce redundancy in sensory cortex, and highlight surprising input. 

However, a number of other studies showed the opposite modulation, a sharpening of 

representations [18,41,142]. On this account, expectations suppress neurons tuned away 

from the expected stimulus features, hence allowing for faster and more accurate 

representations of expected stimuli. What are possible explanations for these, prima 

facie, incompatible results, and which explanations can be ruled out by synthesizing 

the results of previous studies and the work presented here?

I start by briefly mentioning potential explanations, some of which have been 

brought forward in the literature, that can now be ruled out. Both sharpening and 

dampening have been shown in humans using fMRI BOLD (chapters 2 and 4; [18,43]), 

and in non-human primates using electrophysiological recordings [23,41], hence 

ruling out systematic differences in species or recording modalities [79]. Perceptual 

demands of the utilized tasks are also unlikely to account for the opposite results, as 

both sharpening and dampening have been demonstrated using perceptually simple 

(chapters 2 and 4; [126]) and challenging tasks [18,43]. Moreover, differences in the 

stages of the processing hierarchy [79] are unlikely to account for the discrepancy in 

results, as both modulations have been shown in similar object-selective visual areas 

(chapters 2 and 4; [142]). 
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When expectations sharpen and when they dampen representations

Next, I will discuss factors which, given the currently available evidence, may account 

for why some studies report a sharpening, while others report a dampening of 

representations.

Recently vs. well-established priors. Dampening results are usually associated with 

paradigms employing extensive exposure to statistical regularities (chapters 2-4; 

[23,79]), or even building on lifelong experience of congruency [43]. On the other hand, 

sharpening results are commonly found while the underlying associations are, or 

just have been, acquired [18,41]. A similar argument for recent learning can be made 

for the correspondence of self-generated motion and an computer-generated avatar 

mirroring this motion, resulting a sharpening of representations, reported by Yon 

et al. [142]. This suggests that sharpening and dampening may be associated with two 

separate stages of utilizing prior information – an initial learning stage, during which 

representations are sharpened, and a subsequent exploitation stage, during which 

representations are dampened (although see: [143]). 

Concurrent attention manipulations. Another possibility is that attention may 

account for representational sharpening. For example, in Kok et al. [18] predicting the 

orientation of a grating stimulus may lead to prospective feature-based attention 

allocation for the expected orientation. Similarly, in Yon et al. [142], congruent finger 

motion may coincide with spatial attention allocation to the finger that is expected to 

move. Given that attention boosts the gain of attended stimulus features and spatial 

locations (review: [186]), it is possible that expectation sharpening reflects a gain 

modulation due to selectively shifting attention to the predicted stimulus features 

and locations. That is, neurons selective for the attended features are upregulated, 

while expectation suppression results in the overall attenuated response. In contrast, 

in studies supporting the dampening account, only expectation suppression may 

arise, without sharpening by prospective attention allocation. In these studies, 

reallocation of attention may not be task-relevant (e.g., passive fixation), or not 

feasible given the paradigm, because stimuli were presented at the same spatial 

location and the predicted features (object stimuli) were too complex to reliably pre-

allocate attention in a feature-specific fashion (chapters 2-4; [23,79]). 

Future directions

In sum, the work presented in chapters 2-4 contributes to ruling out potential 

explanations for the discrepancy in the expectation literature supporting sharpening 

and dampening. The evidence suggests that systematic differences in recording 
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modality, task-relevance of the predictions, studied species or cortical areas cannot 

consistently account for the opposite results. However, the amount of exposure 

to the investigated priors (well-established vs. just acquired), and concurrent 

manipulations of attention may account for how the balance between sharpening and 

dampening may be tipped in favor of one or the other process. Thus, future work could 

explicitly contrast the effects of using well-established vs. recently acquired priors, 

or better yet, investigate the development of predictions across the learning process. 

For example, a modified version of the paradigm used in chapter 2 could be used, 

while recording fMRI already during the initial learning of probabilistic associations. 

However, see chapter 5 for potential limitations of using probabilistic associations 

during learning. Moreover, careful orthogonalization of attention and expectation 

manipulations may shed additional light on whether expectation sharpening may 

reflect representation modulations by attention, as hypothesized above. Future 

studies could assess this hypothesis by manipulating predictions such that one type 

of prediction does, and one does not allow for prospective attention allocation – e.g., 

using the paradigm in chapter 2 with an additional, orthogonal spatial prediction 

manipulation (although see: [32]).

In sum, the here presented evidence supports the dampening account, suggesting that 

expectations reduce the gain of neural populations tuned towards expected stimulus 

features. Moreover, while I have outlined some possible explanations why other 

studies have reported a sharpening of representations, these hypotheses remain to be 

tested. Additionally, beyond the representation modulations underlying expectation 

suppression following statistical learning, as discussed here, the broader question of 

how these modulations relate to other sensory modulations by predictions requires 

investigation as well. For example, contextual priors [187], such as word contexts, have 

been shown to sharpen sensory representations [188]. Resolving the discrepancy in the 

literature outlined above, may also provide new insight into whether these different 

types of priors rely on similar or distinct neural mechanism, and hence ultimately 

elucidate how unitary or multifaceted the modulations of sensory processing by 

predictions are.

Forms of predictions 

Perceptual predictions are frequently cast as a unitary phenomenon, with the 

accompanying implicit assumption that the underlying computations also constitute 

one common neural modulation, involving the same circuits across different priors. 

However, predictions are diverse in nature. For example, predictions can involve 

different classes of stimuli, which, as discussed here, may directly affect at which level 

of the visual hierarchy feature-specific effects arise (see: Feature-specific and feature-
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unspecific prediction (errors) across the ventral visual stream). Moreover, predictions 

can operate on different timescales, from short term expectations in volatile 

environments [25,41] to priors formed on phylogenetic or ontogenetic timescales 

[126]. Indeed, as also shown in the discussion of statistical learning, predictions can 

be acquired from statistical regularity following extensive (chapters 2-3) or limited 

exposure [54]. As argued above, such differences may in fact account for apparently 

contradictory results in the expectation suppression literature (e.g., recently vs. well-

established priors; see: Dampening vs sharpening of neural representations). Moreover, 

predictions can be anticipatory (chapter 2-5; [28]) or contextual [187,188], top-down 

or bottom-up [189]. In short, given the multitude of predictions and their distinct 

characteristics, it remains unclear whether one neural mechanism can account for all 

conceivable predictions. Establishing common ground between distinct phenomena 

is frequently the aim of scientific investigation and overlapping modulations 

underlying different perceptual predictions have certainly been found. Consider, for 

example, similarities in expectation suppression in vision and audition [19,20], or that 

both task-irrelevant and task-relevant predictions, in chapters 2 and 3 respectively, 

resulted in comparable expectation suppression and a dampening of representations 

(chapter 4). However, even the same expectation may result in two partially distinct 

types of expectation suppression across different levels of the sensory hierarchy 

(i.e., feature-specific and feature-unspecific suppression; see: Feature-specific and 

feature-unspecific prediction (errors) across the ventral visual stream). Thus, assuming 

that all predictions necessarily involve one unitary neural mechanism appears ill-

fated. Therefore, I believe future work ought to explicitly acknowledge the diversity 

of perceptual priors, and carefully consider how and what type of predictions are 

induced. Over time this approach will elucidate the commonalities and differences 

between different predictions the sensory brain employs to guide perception. Indeed, 

since its early days, investigations and theories of perceptual inference have matured 

and shown that predictive processes likely constitute a fundamental operating 

principle of the brain [12,19,30], as supported by the results presented throughout this 

thesis. Therefore, appreciating the multifaceted nature of predictions is arguably not 

a limitation, but an important feature. 

Conclusion

In conclusion, results reported in my thesis support that perceptual priors 

fundamentally modulate sensory processing, as evident by wide-spread expectation 

suppression, the reduced neural response to expected compared to unexpected 

stimuli, throughout the ventral visual stream. Moreover, expectations appear to 

modulate sensory responses irrespective of the behavioral relevance of a prediction, 

further supporting the general role of predictions in guiding perception. However, the 
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precise neural modulation underlying this suppression of sensory responses appears 

to depend on the prediction and cortical area in question. Expectations of objects 

result in a feature-specific dampening in object selective visual areas, but a feature-

unspecific modulation in early visual cortex, potentially reflecting two distinct 

mechanisms. My results also support that statistical learning constitutes a crucial 

source for the acquisition of sensory priors, evident by wide-spread expectation 

suppression following incidental learning of associations between arbitrarily paired 

objects. However, I also showcased some limits of statistical learning and its sensory 

consequences, such as a lack of incidental cross-modal statistical learning and a 

gating of prediction by attention.

Combined these results extent and support theories conceptualizing perception as 

fundamentally relying on prediction [11–13,16]. The here presented evidence is well 

accommodated by casting perception as an inferential process, inferring the most 

likely sources for sensory input using a combination of sensory evidence and prior 

knowledge, derived from statistical regularities in the sensory world. Such inference 

appears to occur across the sensory hierarchy, involving feature-specific predictions 

and error computations, as well as subsequent feature-unspecific modulations. 

While a common neural signature, expectation suppression, appears to underlie 

this hierarchical inference, its characteristics depend on the specific predictions and 

level in the processing hierarchy, and may in fact reflect two distinct mechanisms. 

Therefore, predictions appear to be a core principle of perceptual processing, but 

the precise characteristics of the underlying modulation appear to be multifaceted, 

echoing the multifaceted nature of predictions, and the multitude of response 

properties throughout visual cortex.
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Als we naar de wereld kijken, gebruiken we onze voorkennis om te begrijpen wat 

we zien. Meestal worden we ons pas bewust van dit proces als onze voorspellingen 

onjuist blijken. Denk bijvoorbeeld aan de situatie waarin je een hoek omloopt en 

bijna tegen iemand aanbotst. De verrassing en de schrik die je voelde, is het gevolg 

van een voorspellingsfout. In mijn proefschrift heb ik onderzocht hoe het brein 

voorspellingen gebruikt om onze visuele perceptie te sturen. Een eenvoudig 

voorbeeld hiervan wordt geïllustreerd in Figuur 1 hieronder. Als je naar de afbeelding 

kijkt zie je in eerste instantie waarschijnlijk alleen onsamenhangende vormen en 

lijnen. Ga nu eerst naar de volgende pagina om Figuur 2 te bekijken en ga daarna terug 

en kijk opnieuw naar Figuur 1.

Nadat je hebt gezien dat er een kat op de afbeelding in Figuur 1 staat, is je waarneming 

waarschijnlijk drastisch veranderd: van een onsamenhangend geheel bestaande 

uit lijnen en vormen naar de perceptie van een kat. Het beeld zelf is natuurlijk niet 

veranderd, alleen je voorkennis is veranderd en daarmee ook je bewuste waarneming. 

Deze ervaring suggereert dat onze kennis vormgeeft aan wat we zien.

 

FIGUUR 1  Illustratie van het effect van kennis op perceptie. 

Aanvankelijk lijkt het of de afbeelding alleen uit willekeurige vormen bestaat. Echter, als je naar 
de volgende pagina gaat en naar Figuur 2 kijkt, dan kun je zien dat er een kat in de afbeelding 
verborgen zit. Nu je weet wat je van de afbeelding kunt verwachten, is je waarneming van 
willekeurige vormen veranderd in die van een kat, ook al blijft de afbeelding zelf identiek.
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In hoofdstuk 1 introduceer ik de kernvraag van mijn proefschrift: hoe beïnvloedt 

voorkennis onze waarneming? Uit het bovenstaande voorbeeld heb je kunnen 

ervaren dat kennis inderdaad kan veranderen wat je ziet. Echter, gedurende het 

grootste deel van ons leven merken we niet bewust dat we onze voorkennis met 

zintuiglijke informatie combineren om onze waarnemingen te vormen. Het proces 

dat ik bestudeer lijkt dus een onbewuste perceptuele gevolgtrekking te zijn – dat 

wil zeggen, het brein voert deze operatie automatisch uit. Ook kunnen we uit het 

eerdergenoemde voorbeeld, waarin je per ongeluk bijna tegen iemand aanbotst 

terwijl je de hoek omloopt, opmaken dat het brein zintuigelijke waarnemingen lijkt te 

voorspellen. Hoe het brein voorkennis opdoet en vervolgens gebruikt om sensorische 

input te voorspellen heb ik onderzocht met behulp van magnetic resonance imaging 

(kernspintomografie) in hoofdstuk 2-5 van mijn proefschrift.

FIGUUR 2  Oorspronkelijke afbeelding van Figuur 1. 

Als je nu opnieuw naar de afbeelding in Figuur 1 kijkt, dan zijn de schijnbaar willekeurige 
vormen en lijnen in het figuur mogelijk veranderd door de nieuwe kennis die je hebt opgedaan 
door naar deze originele afbeelding te kijken.

 

In hoofdstuk 2 heb ik onderzocht hoe mensen binnenkomende zintuigelijke 

informatie voorspellen en hoe deze voorspellingen neurale processen moduleren. 

Daartoe heb ik proefpersonen paren van afbeeldingen laten zien. Zonder dat ze het 

wisten, waren sommige afbeeldingen voorspellend voor andere afbeeldingen, wat 

betekent dat het zien van bijvoorbeeld afbeelding A de kans vergrootte dat afbeelding 

B zou volgen. Ik heb dergelijke statistische regelmatigheden gebruikt om te begrijpen 

hoe de hersenen reageren op verwachte afbeeldingen in vergelijking met onverwachte 

beelden. Dat wil zeggen, verandert het correct voorspellen van afbeelding B hoe het 
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beeld wordt verwerkt in het sensorische brein? Mijn resultaten suggereren dat dit 

inderdaad het geval is. Het zintuiglijk brein reageert minder krachtig en minder 

duidelijk op correct voorspelde beelden, zelfs zonder enige bewuste intentie om te 

voorspellen. Met andere woorden, ons brein lijkt zintuigelijke input automatisch te 

voorspellen op basis van statistische regelmatigheden die we hebben geleerd.

Vervolgens, in hoofdstuk 3, heb ik onderzocht hoe automatisch deze voorspellingen 

zijn. Eerder werk, waaronder het onderzoek uit hoofdstuk 2, suggereerde dat we 

continu en automatisch voorspellen, zelfs zonder enige intentie om dat te doen. Ik 

wilde echter weten of aandacht hier mogelijk toch een rol in zou kunnen spelen. Om 

dit te onderzoeken liet ik mijn proefpersonen weer afbeeldingenparen zien, opnieuw 

met statistische regelmatigheden die bepaalden of afbeeldingen meer of minder 

waarschijnlijk zouden verschijnen. Deelnemers kregen de instructie om naar de 

afbeelding of naar letters te kijken, die direct boven de abeeldingen werden getoond. 

Tot mijn verbazing bleek dat wanneer de aandacht van deelnemers van de afbeelding 

was afgeleid, alle voorspellingseffecten waren verdwenen. Met andere woorden, de 

hersenen reageerden nu op gelijke wijze op verwachte en onverwachte afbeeldingen. 

Echter, zodra hun aandacht weer naar de afbeeldingen werd geleid, waren de 

neurale reacties op onverwachte beelden weer sterker dan op verwachte beelden. 

Mijn resultaten laten dus zien dat hoewel ons brein visuele input automatisch en 

onbewust lijkt te voorspellen, aandacht voor de voorspelbare input nodig lijkt te zijn.

In hoofdstuk 4 werd de vraag gesteld hoe we de verminderde neurale reactie bij 

verwachte input in vergelijking tot onverwachte input kunnen verklaren. Een 

mogelijkheid is dat het brein neurale reacties op correct voorspelde afbeeldingen 

vermindert, door de respons van neuronen die sterk reageren op het verwachte beeld 

te reduceren. Een verwacht beeld is namelijk niet erg informatief, omdat je het al kon 

voorspellen. Het zou dus logisch zijn als het brein minder energie besteedt aan het 

reageren op correct voorspelde sensorische input. De reactie wordt hierdoor effectief 

‘gedempt’. Een alternatief is dat het brein nog steeds sterk reageert op de correct 

verwachte beeldkenmerken, maar dat de totale reactie specifieker is en minder ruis 

bevat, waardoor de gemiddelde reactie lager is. Denk bijvoorbeeld aan een koptelefoon 

met ruisonderdrukking waardoor je muziek duidelijker kunt horen bij een lager 

volume omdat het omgevingsgeluid wordt verminderd. Deze vraag heb ik onderzocht 

door opnieuw de data uit hoofdstuk 2 en 3 te onderzoeken, waar ik proefpersonen 

paren van (on)verwachte afbeeldingen liet zien. Aan de hand van rekenmodellen laat 

ik zien dat correct verwachte sensorische input lijken te worden 'gedempt'. Dat wil 

zeggen, het brein lijkt de correct verwachte informatie te reduceren, mogelijk omdat 

deze sensorische input minder informatief is. Hierdoor wordt onze aandacht naar 

potentieel belangrijke onverwachte sensorische input gestuurd.
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Hoofdstuk 5 verkent de grenzen van het leren van statistische regelmatigheden. 

In de voorgaande hoofdstukken heb ik laten zien dat mensen, automatisch en 

zonder de bewuste intentie om te leren statistische regelmatigheden kunnen 

oppikken. Vervolgens heb ik onderzocht of dit leerproces, en de gevolgen daarvan 

voor gedrag en het zintuiglijke brein, verschillende zintuigen kan overstijgen. 

Dus in plaats van proefpersonen afbeeldingsparen te laten zien, presenteerde ik 

geluiden die afbeeldingen voorspelden, waardoor de mensen informatie van twee 

verschillende zintuigen moesten gebruiken om te voorspellen. Ook hier heb ik, net 

als in eerdere onderzoeken, deelnemers niet gevraagd om de regelmatigheden te 

leren, maar vertrouwde ik op het verbazingwekkende vermogen van het brein om 

statistische structuur te ontdekken. Verrassend genoeg bleek dat de deelnemers deze 

audiovisuele regelmatigheden niet hadden geleerd: noch in hun gedrag, noch in de 

hersenen vonden we enig bewijs voor statistische leereffecten. Dit suggereert dat het 

mechanisme van statistisch leren dat we in de hoofdstukken 2-4 zagen, afhankelijk is 

van neurale mechanismen binnen een specifieke modaliteit (bijv. veranderingen in de 

visuele cortex).

In hoofdstuk 6 integreer ik de resultaten van de voorgaande hoofdstukken 

tot een samenhangend geheel. Boven in Figuur 1 zag je in eerste instantie een 

onbegrijpelijk beeld bestaande uit willekeurige lijnen. Maar na het zien van Figuur 

2, het oorspronkelijke beeld van de kat, veranderde je perceptie van Figuur 1. Deze 

verandering illustreerde dat onze voorkennis een directe invloed lijkt te hebben 

op onze waarnemingen. In mijn proefschrift heb ik laten zien hoe het brein gebruik 

maakt van voorkennis om waarneming te sturen. Het brein blijkt opmerkelijk 

goed te zijn in het detecteren en leren van statistische structuren in de zintuiglijke 

wereld, zelfs zonder enige intentie om te leren. Eenmaal aangeleerd lijkt dergelijke 

kennis door de hersenen te worden gebruikt om zintuiglijke input te voorspellen, 

waarbij discrepanties resulteren in voorspellingsfouten; bijvoorbeeld bijna tegen 

iemand aanbotsen wanneer je een hoek omloopt. In het zintuigelijke brein is zo’n 

voorspellingsfout duidelijk zichtbaar door een sterkere en helderder neurale reactie. 

Mijn werk suggereert ook dat het brein voorspellingen kan gebruiken om reacties 

op voorspelde sensorische input te dempen, mogelijk vanwege het feit dat goed 

voorspelde zintuigelijke input minder nieuwe informatie bevat dan verrassende 

sensorische input. In conclusie, voorspelling lijkt dus een fundamenteel aspect te zijn 

van sensorische informatieverwerking. 
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